ІВ Із точки С, що лежить поза прямою а, проведено до цієї прямої похилі СВ і СА, які утворюють з нею кути 45° і 60° відповідно. Знайти довжину проекції похилої СА на пряму, якщо СВ = 3✓2 см
Дано: АВС- равнобедренный треугольник АВ=ВС ВМ- медиана О- точка Доказать : треугольник АВО= треугольнику СВО. Доказательство ; АВ=ВС( так как , АВС - равнобедренный треугольник ) Угол В делиться ВМ пополам ( так как, медиана делит противолежащию сторону попалам => угол тоже поделился пополам). => треугольник АВО= треугольнику СВО ( по 1 признаку треугольников.)
Чертёж: просто начерти равнобедренный треугольник АВС , чтобы вершиной треугольника была В , Из угла В проведи медиану до стороны АС и на ней нарисуй точку О , не забудь показать черточками , что треугольник равнобедренный.
Так как A внутри BCD, AB=AD, то BAD - тоже равнобедренный треугольник, и у него общее с BCD основание BD. Поставим точку K так, что BK=KD, тогда KC - медиана BCD, KA - медиана BAD. Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC. Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.
АВ=ВС
ВМ- медиана
О- точка
Доказать : треугольник АВО= треугольнику СВО.
Доказательство ;
АВ=ВС( так как , АВС - равнобедренный треугольник )
Угол В делиться ВМ пополам ( так как, медиана делит противолежащию сторону попалам => угол тоже поделился пополам).
=> треугольник АВО= треугольнику СВО ( по 1 признаку треугольников.)
Чертёж: просто начерти равнобедренный треугольник АВС , чтобы вершиной треугольника была В , Из угла В проведи медиану до стороны АС и на ней нарисуй точку О , не забудь показать черточками , что треугольник равнобедренный.
Надеюсь , что всё верно.
Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC.
Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.