В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
virki2018
virki2018
23.01.2021 05:57 •  Геометрия

Варіант 1 1. Які геометричні фігури можуть бути паралельними проекціями: 1) прямої; 2) двох паралельних прямих; 3) трикутника?
2. Чи можна при паралельному проектуванні прямокутника отримати: 1) квадрат; 2) трапецію?
3. Чи можна при паралельному проектуванні паралелограма отримати чотирикутник з кутами 30°, 70°, 150°,110°?
4. Чи може паралельною проекцією відрізка бути: 1) пряма; 2) промінь; 3) точка?
5. У якому випадку трикутник проектується: 1) у відрізок; 2) у рівний йому трикутник?
6. Трикутник А1В1С1 є паралельною проекцією рівностороннього трикутника АВС. Побудуйте зображення медіани АМ і висоти СК.

Показать ответ
Ответ:
Mariam21072003
Mariam21072003
16.05.2021 09:37

ответ:

1.для определения значения тригонометрической функции, найдите его на пересечении строки с указанием тригонометрической функции. например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки   sin (синус) и строки 60 градусов находим значение sin 60 = √3/2 ) и т.д. точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.

синус пи, косинус пи, тангенс пи и других углов в радианах

ниже таблица косинусов, синусов и тангенсов также подходит для нахождения значения тригонометрических функций, аргумент которых задан в радианах. для этого воспользуйтесь второй колонкой значений угла. этому можно перевести значение популярных углов из градусов в радианы. например, найдем угол 60 градусов в первой строке и под ним прочитаем его значение в радианах. 60 градусов равно π/3 радиан.

число пи однозначно выражает зависимость длины окружности от градусной меры угла. таким образом, пи радиан равны 180 градусам.  

любое число, выраженное через пи (радиан) можно легко перевести в градусную меру, заменив число пи (π) на 180.

примеры:

1. синус пи.  

sin π = sin 180 = 0

таким образом, синус пи - это тоже самое, что синус 180 градусов и он равен нулю.

2. косинус пи.

cos π = cos 180 = -1

таким образом, косинус пи - это тоже самое, что косинус 180 градусов и он равен минус единице.

3. тангенс пи

tg π = tg 180 = 0

таким образом, тангенс пи - это тоже самое, что тангенс 180 градусов и он равен нулю.

таблица значений синуса, косинуса, тангенса для углов 0 - 360 градусов (часто встречающиеся значения)  

значение угла α

(градусов)  

значение угла α

в радианах  

(через число пи)

sin

(синус) cos

(косинус) tg

(тангенс) ctg

(котангенс) sec

(секанс) cosec

(косеканс)

0 0 0 1 0 - 1 -

15 π/12 синус 15 градусов косинус 15 градусов 2 - √3 2 + √3  

30 π/6 1/2 √3/2 1/√3 √3 2/√3 2

45 π/4 √2/2 √2/2 1 1 √2 √2

60 π/3 √3/2 1/2 √3 1/√3 2 2/√3

75 5π/12 косинус 15 градусов, синус 75 градусов синус 15 градусов, косинус 75 градусов 2 + √3 2 - √3  

90 π/2 1 0 - 0 - 1

105   7π/12       косинус 15 градусов -синус 15 градусов    

- 2 - √3 √3 - 2    

120 2π/3 √3/2 -1/2 -√3 -√3/3  

135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2

150 5π/6 1/2 -√3/2 -√3/3 -√3  

180 π 0 -1 0 - -1 -

210 7π/6 -1/2 -√3/2 √3/3 √3  

240 4π/3 -√3/2 -1/2 √3 √3/3  

270 3π/2 -1 0 - 0 - -1

360 2π 0 1 0 - 1 -

если в таблице значений тригонометрических функций вместо значения функции указан прочерк (тангенс (tg) 90 градусов, котангенс (ctg) 180 градусов) значит при данном значении градусной меры угла функция не имеет определенного значения. если же прочерка нет - клетка пуста, значит мы еще не внесли нужное значение. мы интересуемся, по каким запросам к нам приходят пользователи и дополняем таблицу новыми значениями, несмотря на то, что текущих данных о значениях косинусов, синусов и тангенсов самых часто встречающихся значений углов вполне достаточно для решения большинства .  

таблица значений тригонометрических функций sin, cos, tg для наиболее популярных углов

0, 15, 30, 45, 60, 90 360 градусов  

(цифровые значения "как по таблицам брадиса")  

значение угла α (градусов)   значение угла α в радианах   sin (синус)   cos (косинус)   tg (тангенс)   ctg (котангенс)  

иногда для быстрых расчетов нужно не точное, а вычисляемое значение (число десятичной дробью), которое раньше искали в таблицах брадиса. поэтому, в дополнение к таблице точных значений тригонометрических функций эти же самые значения, но в виде десятичной дроби, округленной до четвертого знака. дополнительно в таблицу включены "нестандартные" значения тангенса, косинуса, синуса 140 градусов, синуса 105, 70, косинуса 105 и 50 градусов.

пример: синус 60 градусов равен приблизительно 0,866025404, а в таблице указано значение sin 60 ≈ 0,8660 ; косинус 30 градусов равен этому же самому числу (см. формулы преобразования тригонометрических функций)

2.   cos²α=-√1-0,6²=-√1-0,36=-√0,64

cos=-0,8

tgα=sinα÷cosα=-0,6÷0,8=-0,75

3.)1+ctg^2 5a=1/sin^2 5a

 

 

объяснение:

0,0(0 оценок)
Ответ:
LightDarkness
LightDarkness
15.09.2022 10:01

Объяснение:

ЗАДАЧА 6

ДАНО: ∆АВС прямоугольный, <С=90°, <А=60°, АС=4

НАЙТИ: АВ

РЕШЕНИЕ: сумма острых углов прямоугольного треугольника составляет 90°, поэтому <В=90–60=30°

Катет АС, лежащий напротив него равен половине гипотенузы, поэтому гипотенуза АВ=2×4=8

ОТВЕТ: АВ=8

ЗАДАЧА 7

ДАНО: ∆АВС - прямоугольный, <С=90°, АС=ВС, СД=6

НАЙТИ: АВ

Если АС=ВС, то этот треугольник равнобедренный, а высота СД, проведённая из вершины прямого угла также является медианой и биссектрисой, а медиана, проведённая из вершины прямого угла равна половине гипотенузы, поэтому СД=½АВ или АВ =2СД=2×6=12

ОТВЕТ: АВ=12

ЗАДАЧА 8

ДАНО: ∆ АВС - прямоугольный, <А:<В=2:1, АВ=14, <С=90°

НАЙТИ: АС

РЕШЕНИЕ: сумма острых углов прямоугольного треугольника составляет 90°. Обозначим пропорции 2:1 как 2х и х и составим уравнение:

2х+х=90

3х=90

х=90÷3=30°

Итак: угол В=30°, тогда угол А=2×30=60°

Так как АС лежит напротив угла 30°, то АС=½АВ=½×14=7

ОТВЕТ: АС=7

ЗАДАЧА 9

ДАНО: ∆АВС прямоугольный: <С=90°, АС=ВС=10, АМ=СМ, МР перпендикулярно АС.

НАЙТИ: МР

РЕШЕНИЕ: МР делит катет АС пополам, поэтому АМ=СМ=10÷2=5.

МР является средней линией ∆АВС и если МР перпендикулярно АС, тогда он будет параллелен ВС. По свойствам средней линии треугольника МР=½ВС=½×10=5.

Можно также использовать средней линии, так как она является средней линией в равнобедренном треугольнике, а наш треугольник АВС именно равнобедренный, то МР отсекает от ∆АВС треугольник АРМ подобный ∆АВС. Поэтому ∆АРМ также является равнобедренным, у которого катеты АМ=РМ=5

ЗАДАЧА 10

ДАНО: ∆АВС - прямоугольный, <С=90°, <А=30°, ВК - биссектриса <В=8

НАЙТИ: АС

Так как сумма острых углов прямоугольного треугольника составляет 90°, то <В в ∆АВС=90–30=60°. Поскольку ВК - биссектриса, то она делит <В пополам поэтому <СВК=<АВК=60÷2=30°

Рассмотрим ∆АВК. В нём <АВК=<А=30°, из чего следует что ∆АВК - равнобедренный, поэтому ВК=АК=8

Рассмотрим ∆СВК. Он прямоугольный, и ВС и СК - катеты, а ВК - гипотенуза. В нём <СВК=30°, а катет СК, лежащий напротив него равен половине гипотенузы ВК, поэтому СК=½×ВК=8÷2=4

Итак: АК=8, СК=4.

Тогда АС=СК+АК=4+8=12

ОТВЕТ: АС=12

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота