Вариант 1 1. Дано: AB = CD, BC = DA, ZC = 40° (рис. 2.157). Доказать: = ДСDB. Найти: LA.
2. На боковых сторонах равнобедренного треугольника АВС отложены равные отрезки ВМ и BN. BD - медиана треугольника. Докажите, что MD = ND.
3. В треугольниках АВС и А,В,С, АВ = А.В., = = Точки и лежат соответственно на сторонах АС а ,, причем CD = C,D., Докажите, что ABDC = D, Cрав- ните отрезки BD и D 4, найдите пары равных треугольников и докажите их равенство
Теорема: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 — внешний угол треугольника АВМ, а ∠ 6 — внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.
Прямая РМ является серединным перпендикуляром по отношению а к отрезку АС. Так как прямая РМ проходит через середину данного отрезка , и перпендикулярна ему. Любая точка , лежащая на серединном перпендикуляре, равноудалена от концов отрезка. Следовательно, отрезок СМ равен отрезку АМ ⇒ АМ=13 см. Теперь найдем отрезок МВ. Треугольник СМВ равнобедренный . Пусть угол ∠А=α, поскольку треугольник АМС равнобедренный , то угол РСМ тоже равен α. Но сумма острых углов в прямоугольном треугольнике равна 90°, и угол МСВ=90-α , но угол МВС тоже равен 90°-α ⇒ Треугольник МСВ равнобедренный, и его боковые стороны равны 13 см. Гипотенуза равна сумме двух этих отрезков АВ=АМ+МВ=13*2=26
Любая точка , лежащая на серединном перпендикуляре, равноудалена от концов отрезка.
Следовательно, отрезок СМ равен отрезку АМ ⇒ АМ=13 см.
Теперь найдем отрезок МВ.
Треугольник СМВ равнобедренный . Пусть угол ∠А=α, поскольку треугольник АМС равнобедренный , то угол РСМ тоже равен α. Но сумма острых углов в прямоугольном треугольнике равна 90°, и угол МСВ=90-α
, но угол МВС тоже равен 90°-α ⇒ Треугольник МСВ равнобедренный, и его боковые стороны равны 13 см.
Гипотенуза равна сумме двух этих отрезков АВ=АМ+МВ=13*2=26