Вариант 1 1)Дано: ВО = DO, ∠ABC = 45°, ∠BCD = 55°, ∠AOC = 100° (рис. 5.89). Найти: ∠D. Доказать: ΔАВО = ΔCDO.
2)В равнобедренном треугольнике АВС с основанием АС угол В равен 42°. Найти: Два других угла треугольника АВС.
3)Точки В и D лежат в разных полуплоскостях относительно прямой АС. Треугольники АВС и ADC — равносторонние. Доказать: АВ || CD.
4)Дано: ∠EPM = 90°, ∠MEP = 30°, ME = 10 см (рис. 5.90).
а) Между какими целыми числами заключена длина отрезка ЕР?
б) Найдите длину медианы PD.
Вариант 2
1)Дано: АВ = CD, ∠ABC = 65°, ∠ADC = 45°, ∠AOC = 110° (рис. 5.91). Найти: ∠C. Доказать: ΔАВО = ΔDCO.
2)В равнобедренном треугольнике AВС с основанием АС сумма углов А и С равна 156°. Найти: углы треугольника АВС.
3)Точки В и D лежат в разных полуплоскостях относительно прямой АС. Треугольники АВС и ADC — равнобедренные прямоугольные (∠B = ∠D = 90°).Доказать: АВ || CD.
4)Дано: ∠DBC = 90°, ∠BDC = 60°, BD = 4 см (рис. 5.92).
а) Между какими целыми числами заключена длина отрезка ВС?
б) Найдите длину медианы BE.
Решите
2) В любом треугольнике высоты или их продолжения пересекаются в одной точке. - да
3) Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. - да
4) В равнобедренном треугольнике высота, проведенная к основанию, является медианой и биссектрисой. - да
5) Любой диаметр окружности есть хорда. - да
6) Сумма углов прямоугольного треугольника равна 180. - да
7) Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется высотой треугольника. - нет
8) В треугольнике может быть два тупых угла. - нет
9) Сумма двух сторон треугольника меньше третьей стороны треугольника. - нет
10) Все точки каждой из двух параллельных прямых равноудалены от другой прямой. - да
11) Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и углу другого прямоугольного треугольника, то такие треугольники равны. - да
12) Две прямые, перпендикулярные к третьей, не пересекаются. - да
13)Медиана, проведенная из вершины прямого угла прямоугольного треугольника равна половине гипотенузы. - да
Основания трапеции параллельны.
Её диагонали - секущие.
Накрестлежащие углы при их пересечении с основаниями равны. Треугольники, которые образуются при пересечении диагоналей, подобны по 3-м углам.
Коэффициент подобия этих треугольников равен отношению оснований трапеции.
k=4/8=1/2
Отношение длин соответствующих элементов подобных треугольников равно коэффициенту подобия.
Точка пересечения диагоналей делит высоту трапеции на части, являющиеся высотами треугольников.
Обозначим высоту меньшего треугольника h, высоту большего - Н.
Тогда h/H=1/2.
Высота трапеции содержит 1+2 =3 части.
Каждая часть=9:3=3 см
Поэтому h=3 см
Н=2•3=6 см.
Расстояния от точки пересечения диагоналей до оснований трапеции равны 3 см и 6 см.
*****************
Задача 2.
Наложим данные треугольники друг на друга так, чтобы стороны их равных углов совпали. Пусть общая вершина будет В, а сами треугольники – АВС и КВМ.
Так как оба треугольника равнобедренные и имеют равные углы при вершине, их углы при основаниях КМ и АС тоже равны ( свойство).
∆ КВМ~∆ АВС. k= ВС/ ВМ=15:5=3
Высота равнобедренного треугольника, проведенная к основанию, делит его пополам.
КО=ОМ, и АН=НС.
КО=3 ( ∆ КВО - египетский, проверьте по т.Пифагора.)
Отношение длин соответствующих элементов подобных треугольников равно коэффициенту подобия.
АН:КО=3.
АН=3•3=9
АС=9•2=18 см
Р ∆ АВС=2•ВС+АС=30+18=48 см