Проекция бокового ребра b на плоскость основания - это радиус описанной окружности основания R Высота пирамиды h h = b*sin(β) R = b*cos(β) Площадь основания S₁ - это площадь трёх равнобедренных треугольников с углом при вершине 120° и боковыми сторонами R S₁ = 3*1/2*R²*sin(120°) = 3/2*b²*cos²(β)*√3/2 S₁ = 3√3/4*b²*cos²(β) Объём V V = 1/3*S₁*h = √3/4*b²*cos²(β)*b*sin(β) V = √3/4*b³*cos²(β)*sin(β) Сторона основания a по теореме косинусов из того же самого треугольничка со 120° при вершине a² = 2R² - 2R²*cos(120°) = 3R² a = R√3 = b*cos(β)√3 В равностороннем треугольнике радиусы вписанной r и описанной R окружностей отличаются в два раза, что следует из деления медиан точкой пересечения в отношении 2 к 1 от вершины угла r = R/2 = b*cos(β)/2 Апофема f через высоту и радиус вписанной окружности основания по теореме Пифагора f² = r² + h² = b²*cos²(β)/4 + b²*sin²(β) f = b√(cos²(β)/4 + sin²(β)) И боковая поверхность S₂ S₂ = 3*1/2*a*f = 3/2*b*cos(β)√3*b√(cos²(β)/4 + sin²(β)) S₂ = 3√3/2*b²*cos(β)√(cos²(β)/4 + sin²(β))
Высота равнобедренного треугольника, проведенного к основанию 6, делит основание пополам. ( cм. рисунок в приложении) Высота разбивает равнобедренный треугольник на два прямоугольных с гипотенузой 5 см и катетом 3 см. Второй катет 4 см ( по теореме Пифагора, это египетский треугольник) S=6·4/2=12 кв. ед Вершина пирамиды проектируется в центр описанной окружности (см. рисунок, три прямоугольных треугольника равны по катету ( высота пирамиды - общая и острому углу) r=S/p=12/(5+5+6)/2=24/16=3/2=1,5 H=r·tg60°=1,5·√3=3√3/2
Высота пирамиды h
h = b*sin(β)
R = b*cos(β)
Площадь основания S₁ - это площадь трёх равнобедренных треугольников с углом при вершине 120° и боковыми сторонами R
S₁ = 3*1/2*R²*sin(120°) = 3/2*b²*cos²(β)*√3/2
S₁ = 3√3/4*b²*cos²(β)
Объём V
V = 1/3*S₁*h = √3/4*b²*cos²(β)*b*sin(β)
V = √3/4*b³*cos²(β)*sin(β)
Сторона основания a по теореме косинусов из того же самого треугольничка со 120° при вершине
a² = 2R² - 2R²*cos(120°) = 3R²
a = R√3 = b*cos(β)√3
В равностороннем треугольнике радиусы вписанной r и описанной R окружностей отличаются в два раза, что следует из деления медиан точкой пересечения в отношении 2 к 1 от вершины угла
r = R/2 = b*cos(β)/2
Апофема f через высоту и радиус вписанной окружности основания по теореме Пифагора
f² = r² + h² = b²*cos²(β)/4 + b²*sin²(β)
f = b√(cos²(β)/4 + sin²(β))
И боковая поверхность S₂
S₂ = 3*1/2*a*f = 3/2*b*cos(β)√3*b√(cos²(β)/4 + sin²(β))
S₂ = 3√3/2*b²*cos(β)√(cos²(β)/4 + sin²(β))
Высота разбивает равнобедренный треугольник на два прямоугольных с гипотенузой 5 см и катетом 3 см. Второй катет 4 см ( по теореме Пифагора, это египетский треугольник)
S=6·4/2=12 кв. ед
Вершина пирамиды проектируется в центр описанной окружности
(см. рисунок, три прямоугольных треугольника равны по катету ( высота пирамиды - общая и острому углу)
r=S/p=12/(5+5+6)/2=24/16=3/2=1,5
H=r·tg60°=1,5·√3=3√3/2