Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.
А) Треугольники КМА и РТВ равны по двум сторонам и углу между ними (первый признак равенства треуг-ов): - КМ=ТР как противоположные стороны параллелограмма КМРТ; - МА=ТВ по условию; - <KMT=<PTM как накрест лежащие углы при пересечении двух параллельных прямых КМ и РТ секущей МТ (КМ II РТ как противоположные стороны параллелограмма КМРТ).
б) Для доказательства используем один из признаков параллелограмма: если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник - параллелограмм. В нашем случае: - КА=РВ как соответственные стороны равных треугольников КМА и РТВ; - РА=КВ как соответственные стороны равных треугольников МАР и ТВК. Треугольники МАР и ТВК равны по двум сторонам и углу между ними: МР=ТК как противоположные стороны параллелограмма КМРТ; МА=ТВ по условию; <PMT=<KTM как накрест лежащие углы при пересечении двух параллельных прямых МР и КТ секущей МТ (MP II KT как противоположные стороны параллелограмма КМРТ). Значит, КАРВ - параллелограмм.
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.
- КМ=ТР как противоположные стороны параллелограмма КМРТ;
- МА=ТВ по условию;
- <KMT=<PTM как накрест лежащие углы при пересечении двух параллельных прямых КМ и РТ секущей МТ (КМ II РТ как противоположные стороны параллелограмма КМРТ).
б) Для доказательства используем один из признаков параллелограмма: если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник - параллелограмм. В нашем случае:
- КА=РВ как соответственные стороны равных треугольников КМА и РТВ;
- РА=КВ как соответственные стороны равных треугольников МАР и ТВК.
Треугольники МАР и ТВК равны по двум сторонам и углу между ними: МР=ТК как противоположные стороны параллелограмма КМРТ; МА=ТВ по условию; <PMT=<KTM как накрест лежащие углы при пересечении двух параллельных прямых МР и КТ секущей МТ (MP II KT как противоположные стороны параллелограмма КМРТ).
Значит, КАРВ - параллелограмм.