Т.к. тр. равнобедренный углы при основании равны, следовательно каждый угол 60\2=30
Высота проведённая в равнобедренном тр. является и медианой и биссектрисой,
следовательно делит основание пополам.
Рассмотрим образовавшийся прямоуг. тр.: По 2 свойству прямоуг. тр.: против угла в 30 градусов лежит катет равный половине гипотинузы. Тогда пусть катет лежащий против угла в 30 градусов будет A, тогда гипотинуза будет 2A.
Площадь прямоугольника-s= a*b докажем, что s = ab.
достроим прямоугольник до квадрата со стороной a + b, как показано на рисунке 1.
так как площадь квадрата равна квадрату его стороны, то площадь этого квадрата равна (a + b)2.с другой стороны, этот квадрат составлен из данного прямоугольника с площадью s, равного ему прямоугольника с площадью s (так как, по свойству площадей, равные многоугольники имеют равные площади) и двух квадратов с площадями a2 и b2. так как четырехугольник составлен из нескольких четырехугольников, то, по свойству площадей, его площадь равна сумме площадей этих четырехугольников: (a + b)2 = s + s + a2 + b2, или a2 + 2ab + b2 = 2s + a2 + b2.отсюда получаем: s = ab, что и требовалось доказать.
180-120=60 - сумма оставшихся углов
Т.к. тр. равнобедренный углы при основании равны, следовательно каждый угол 60\2=30
Высота проведённая в равнобедренном тр. является и медианой и биссектрисой,
следовательно делит основание пополам.
Рассмотрим образовавшийся прямоуг. тр.: По 2 свойству прямоуг. тр.: против угла в 30 градусов лежит катет равный половине гипотинузы. Тогда пусть катет лежащий против угла в 30 градусов будет A, тогда гипотинуза будет 2A.
По т. Пифагора (2A)²=A²+2²
A=√4/3
ответ: √4/3
Объяснение:
достроим прямоугольник до квадрата со стороной a + b, как показано на рисунке 1.
так как площадь квадрата равна квадрату его стороны, то площадь этого квадрата равна (a + b)2.с другой стороны, этот квадрат составлен из данного прямоугольника с площадью s, равного ему прямоугольника с площадью s (так как, по свойству площадей, равные многоугольники имеют равные площади) и двух квадратов с площадями a2 и b2. так как четырехугольник составлен из нескольких четырехугольников, то, по свойству площадей, его площадь равна сумме площадей этих четырехугольников: (a + b)2 = s + s + a2 + b2, или a2 + 2ab + b2 = 2s + a2 + b2.отсюда получаем: s = ab, что и требовалось доказать.