Вершини трикутника АВС мають координати А(-2;4), В(3;-2), С(-1;-3). Виконали паралельне перенесення, при якому образом точки B є точка C. Які координати вершин отриманого трикутника? Виконайте рисунок.
1. Многогранник - это геометрическое тело, ограниченное конечным числом плоских многоугольников, любые два смежных из которых не лежат в одной плоскости.
Сами многоугольники называют гранями многогранника, их стороны - ребрами многогранника, а их вершины - вершинами многогранника.
Диагональ многогранника - это отрезок, соединяющий две вершины многогранника, не лежащие в одной грани.
2. Призма - это многогранник, у которого две грани - равные многоугольники с соответственно параллельными сторонами (называют основаниями), а остальные грани - параллелограммы (называют боковыми), у каждого из которых две стороны являются соответственными сторонами оснований.
Прямая призма - это призма, у которой все боковые грани - прямоугольники.
Правильная призма - это прямая призма, у которой в основании лежит правильный многоугольник.
1) Радиус окружности, описанной около правильного шестиугольника, равен стороне этого шестиугольника. Тогда длина дуги окружности, стягиваемой стороной данного шестиугольника равна L=2πR/6 = 2π9/6=3π. ответ: L=3π. 2) Центр вписанной и описанной окружности правильного треугольника лежит в одной точке - центре треугольника. Эта точка делит высоту правильного треугольника в отношении 2:1, считая от вершины. причем 2/3 этой высоты - радиус описанной окружности, а 1/3 - радиус вписанной окружности.. Итак, R=2*7=14, а L=2πR или L=28π ответ: L=28π. 3) Диагонали правильного шестиугольника, пересекаясь в точке О, делят его на 6 равносторонних треугольника. Рассмотрим треугольник АОВ и ромб АВОG. <BOC=60°, а <GBO=30°. Следовательно, <GBC=90°. Точно так же <BCF=90°. ВС=GF, как стороны правильного шестиугольника. CF=BG, как стороны равных треугольников ВОG и CDF. Итак, ВСFG - прямоугольник, так как противоположные стороны попарно равны, а прилежащие к одной стороне углы равны 90°. Что и требовалось доказать. Если сторона шестиугольника равна "а", то ВС=FG=а, BG=CF= a√3 (по Пифагору из треугольника ВОG).
1. Многогранник - это геометрическое тело, ограниченное конечным числом плоских многоугольников, любые два смежных из которых не лежат в одной плоскости.
Сами многоугольники называют гранями многогранника, их стороны - ребрами многогранника, а их вершины - вершинами многогранника.
Диагональ многогранника - это отрезок, соединяющий две вершины многогранника, не лежащие в одной грани.
Примеры многогранников: пирамида, призма, параллелепипед, октаэдр, додекаэдр, икосаэдр.
2. Призма - это многогранник, у которого две грани - равные многоугольники с соответственно параллельными сторонами (называют основаниями), а остальные грани - параллелограммы (называют боковыми), у каждого из которых две стороны являются соответственными сторонами оснований.
Прямая призма - это призма, у которой все боковые грани - прямоугольники.
Правильная призма - это прямая призма, у которой в основании лежит правильный многоугольник.
L=2πR/6 = 2π9/6=3π.
ответ: L=3π.
2) Центр вписанной и описанной окружности правильного треугольника лежит в одной точке - центре треугольника. Эта точка делит высоту правильного треугольника в отношении 2:1, считая от вершины.
причем 2/3 этой высоты - радиус описанной окружности, а 1/3 - радиус вписанной окружности.. Итак, R=2*7=14, а L=2πR или L=28π
ответ: L=28π.
3) Диагонали правильного шестиугольника, пересекаясь в точке О, делят его на 6 равносторонних треугольника. Рассмотрим треугольник АОВ и ромб АВОG. <BOC=60°, а <GBO=30°. Следовательно, <GBC=90°.
Точно так же <BCF=90°. ВС=GF, как стороны правильного шестиугольника. CF=BG, как стороны равных треугольников ВОG и CDF.
Итак, ВСFG - прямоугольник, так как противоположные стороны попарно равны, а прилежащие к одной стороне углы равны 90°.
Что и требовалось доказать.
Если сторона шестиугольника равна "а", то ВС=FG=а, BG=CF= a√3 (по Пифагору из треугольника ВОG).