Вершины треугольника ABC имеют координаты: А (1; 6; 2); B(2; 3; -1); C (-3; 4; 5). А (-1; 2; 3); B(2; -1; 0); C (-4; 2; -3). А) Разложить векторы AB, BC и CA по координатным векторам i, j, k. Б) Найти периметр треугольника АВС.
1) В прямоугольном треугольнике АВС из вершины прямого угла С проведем к гипотенузе AB отрезок CO так, чтобы CO=OA.
2) ∆ AOC — равнобедренный с основанием AC (по определению равнобедренного треугольника).
Значит, у него углы при основании равны:∠OAC=∠OCA=α.
3) Так как сумма острых углов прямоугольного треугольника равна 90º, то в треугольнике ABC ∠B=90º- α.
4) Так как ∠BCA=90º (по условию), то ∠BCO=90º- ∠OCA=90º-α.
5) Рассмотрим треугольник BOC.
∠BCO=90º-α, ∠B=90º- α, следовательно, ∠BCO=∠B.
Значит, треугольник BOC — равнобедренный с основанием BC (по признаку равнобедренного треугольника).
Отсюда BO=CO.
6) Так как CO=OA (по построению) и BO=CO (по доказанному), то CO=OA=BO, AB=OA+BO=2∙OA=2∙CO.
Таким образом, точка O — середина гипотенузы AB, отрезок CO соединяет вершину треугольника с серединой противолежащей стороны, значит, CO — медиана, проведенная к гипотенузе, и она равна половине гипотенузы
1) В прямоугольном треугольнике АВС из вершины прямого угла С проведем к гипотенузе AB отрезок CO так, чтобы CO=OA.
2) ∆ AOC — равнобедренный с основанием AC (по определению равнобедренного треугольника).
Значит, у него углы при основании равны:∠OAC=∠OCA=α.
3) Так как сумма острых углов прямоугольного треугольника равна 90º, то в треугольнике ABC ∠B=90º- α.
4) Так как ∠BCA=90º (по условию), то ∠BCO=90º- ∠OCA=90º-α.
5) Рассмотрим треугольник BOC.
∠BCO=90º-α, ∠B=90º- α, следовательно, ∠BCO=∠B.
Значит, треугольник BOC — равнобедренный с основанием BC (по признаку равнобедренного треугольника).
Отсюда BO=CO.
6) Так как CO=OA (по построению) и BO=CO (по доказанному), то CO=OA=BO, AB=OA+BO=2∙OA=2∙CO.
Таким образом, точка O — середина гипотенузы AB, отрезок CO соединяет вершину треугольника с серединой противолежащей стороны, значит, CO — медиана, проведенная к гипотенузе, и она равна половине гипотенузы
1. Если две противоположные стороны четырехугольника равны и параллельны, то такой четырехугольник параллелограмм.
2. Сумма углов параллелограмма , прилежащих к одной стороне , равна 180 градусов.
3. Верно ли следующее высказывание :
а) Диагонали параллелограмма делят его на четыре равных треугольника. - нет
б) Четырехугольник у которого две стороны параллельны и равны , называется параллелограммом. - да
в) Может ли один угол параллелограмма быть равным 30º, а другой - 50º? - нет, потому что сумма углов, прилежащих к одной стороне, 180 градусов
4. Четырехугольник АВСД – параллелограмм. Если ∟В = 70º, то угол Д =70 градусов, т.к. противолежащие углы параллелограмма равны
Сумма двух соседних сторон параллелограмма равна 10 см. Чему равен его периметр? - Р=10*2=20 см.