Вершины треугольника делят описанную окружность в отношении 1: 2: 3.наибольшая сторона треугольника равна 4 корня из 6. тогда площадь треугольника равна?
Имеем треугольник АВС. Пусть отношение дуги АВ:ВС:СА=1:2:3. Примем градусную величину дуги АВ за х. Тогда ВС=2х; СА=3х
В окружности 360 градусов. Составим уравнение:
х+2х+3х=360
6х=360
х=60=АВ опирается.; ВС=2*60=120; СА=3*60=180
Вершины А, В и С - это вписанные углы. Величина вписанного угла равна половине дуги, на которую он опирается. Значит, угол А=120/2=60; угол В=180/2=90; угол С=60/2=30. Т.е. треугольник АВС - прямоугольный. Значит его гипотенуза АС = 4 корня из 6.
АВ - катет, лежащий против угла в 30 градусов. Значит АВ=АС/2=2 корня из 6.
ВС^2=AC^2-AB^2=(4 корня из 6)^2-(2 корня из 6)^2=96-24=72
BC=6 корень из 2
Площадь АВС=1/2*АВ*ВС=1/2*2 корня из 6*6 корень из 2=12корень из 3
Имеем треугольник АВС. Пусть отношение дуги АВ:ВС:СА=1:2:3. Примем градусную величину дуги АВ за х. Тогда ВС=2х; СА=3х
В окружности 360 градусов. Составим уравнение:
х+2х+3х=360
6х=360
х=60=АВ опирается.; ВС=2*60=120; СА=3*60=180
Вершины А, В и С - это вписанные углы. Величина вписанного угла равна половине дуги, на которую он опирается. Значит, угол А=120/2=60; угол В=180/2=90; угол С=60/2=30. Т.е. треугольник АВС - прямоугольный. Значит его гипотенуза АС = 4 корня из 6.
АВ - катет, лежащий против угла в 30 градусов. Значит АВ=АС/2=2 корня из 6.
ВС^2=AC^2-AB^2=(4 корня из 6)^2-(2 корня из 6)^2=96-24=72
BC=6 корень из 2
Площадь АВС=1/2*АВ*ВС=1/2*2 корня из 6*6 корень из 2=12корень из 3