Острый угол 60°, => меньшая диагональ ромба =36. из тупого угла в 120° опущена высота на сторону ромба. рассмотрим прямоугольный треугольник, образованный меньшей диагональю ромба 36 -гипотенуза, высотой к стороне -катет и отрезком стороны - катет против угла 30°, он равен 36:2=18. следовательно другой отрезок так же равен 18 см
или другое рассуждение: меньшая диагональ разделила ромб на на 2 равных равносторонних треугольника. высота опущенная из тупого угла -это высота правильного треугольника, которая является биссектрисов и медианой, => 36:2=18 ответ: отрезки по 18
ответ.
2.
уравнение окружности с центром в точке А и радиусом R имеет вид:
(x+3)²+(y-2)²=R²
Чтобы найти R подставим координаты точки В в это уравнение
(0+3)²+(-2-2)²=R²
9+16=R² R²=25
ответ. (x+3)²+(y-2)²=25
3.
Высота равнобедренного треугольника,проведенная к основанию, является и медианой.
Середина отрезка КN точка С имеет координаты
4.
Пусть координаты точки N, лежащей на оси ох:
N (a;0)
Так как по условию точка N равноудалена от точек Р и К, то NP=NK
или
Возводим в квадрат
1+2а+а²+9=a²+4
2a=-6
a=-3
ответ. N(-3;0)
из тупого угла в 120° опущена высота на сторону ромба. рассмотрим прямоугольный треугольник, образованный меньшей диагональю ромба 36 -гипотенуза, высотой к стороне -катет и отрезком стороны - катет против угла 30°, он равен 36:2=18. следовательно другой отрезок так же равен 18 см
или другое рассуждение: меньшая диагональ разделила ромб на на 2 равных равносторонних треугольника. высота опущенная из тупого угла -это высота правильного треугольника, которая является биссектрисов и медианой, => 36:2=18
ответ: отрезки по 18