Висота піраміди дорівнює 19см . На відстані zсм (z<19) від основи її перетинає площина, паралельна основі. Обчислити відношення об'ємів більшої і меншої пірамід.
Чертеж здесь излишен (поскольку Вы пишете всего лишь желательно, а не обязательно, я имею моральное право чертеж не рисовать. Нарисуйте его сами, не маленький. Решение сводится к ссылке на теорему о трех перпендикулярах. Если мы опускаем из точки K перпендикуляр на плоскость (основание перпендикуляра - точка A), после чего из полученной точки опускаем перпендикуляр на прямую, лежащую в этой плоскости (основание этого перпендикуляра - точка B), то мы попадаем в ту же точку, куда попадает перпендикуляр, опущенный из точки K прямиком на прямую. Это и доказывает, что KB перпендикулярно BC
Имеем равнобедренный треугольник АВС с основой АС и высотой ВД. Из угла А проведена биссектриса АО до пересечения с высотой ВД ( она же и биссектриса угла В). Стороны с учётом коэффициента пропорциональности х равны: АВ = ВС = 3х, АС = 4х, половина её АД = 2х. По Пифагору (3х)²-(2х)² = 30². 9х² - 4х² = 900, 5х² = 900, х = √(900/5) = √180 = 6√5. Стороны равны: АВ = ВС = 3х = 18√5, АС = 4х = 24√5. Косинус угла А равен 2х/3х = 2/3. Находим тангенс половины угла А:
Отрезок высоты ОД = АД*tg(A/2) = 12√5*(1/√5) = 12 см. Второй отрезок ВО = 30-12 = 18 см.
Из угла А проведена биссектриса АО до пересечения с высотой ВД ( она же и биссектриса угла В).
Стороны с учётом коэффициента пропорциональности х равны:
АВ = ВС = 3х,
АС = 4х, половина её АД = 2х.
По Пифагору (3х)²-(2х)² = 30².
9х² - 4х² = 900,
5х² = 900,
х = √(900/5) = √180 = 6√5.
Стороны равны:
АВ = ВС = 3х = 18√5,
АС = 4х = 24√5.
Косинус угла А равен 2х/3х = 2/3.
Находим тангенс половины угла А:
Отрезок высоты ОД = АД*tg(A/2) = 12√5*(1/√5) = 12 см.
Второй отрезок ВО = 30-12 = 18 см.