Мне проще эту задачу было решить с тригонометрии... но, получив "красивый" ответ --- угол равен 45°, захотелось найти более простое решение (ведь не указано для какого класса решается задача и, возможно, тригонометрия автору еще не известна))) не знаю--получилось ли проще... т.к. один данный угол является половиной другого, то очень хочется связать их в один треугольник... если провести биссектрису угла в 30°, то получим равнобедренный треугольник с углами при основании по 15°, в нем хочется построить высоту... но тогда и к биссектрисе провести перпендикуляр и получим еще один равнобедренный треугольник с углом при вершине 30°))) осталось рассмотреть получившиеся треугольники... один из них (выделила желтым цветом) окажется равносторонним... другой (прямоугольный) окажется равнобедренным... (ярко желтые уголки--по 45°)
∠CBF = ∠CBA + ∠ABF
Отсюда
∠CBA = ∠CBF — ∠ABF = 180° — 76° = 104°
Рассмотрим треугольник ABC
Сумма углов треугольника равна 180°:
∠CBA + ∠BAC + ∠ACB = 180°
104° + ∠BAC + ∠ACB = 180°
По условию задачи нам дан равнобедренный треугольник ACB. Согласно свойству равнобедренного треугольника — углы при основании (CA) равны. Т.е. ∠BAC и ∠ACB равны.
Следовательно
∠BAC + ∠ACB = 180° — 104° = 76°
∠BAC = ∠ACB = 76° : 2 = 38°
Рассмотрим треугольник ACO
По условию задачи в треугольнике ABC проведены биссектрисы CL и AM.
По определению, биссектриса делит угол пополам, следовательно
∠CAO = ∠CAB : 2 = 38° : 2 = 19°
∠ACO = ∠ACB : 2 = 38° : 2 = 19°
Сумма углов треугольника равна 180°:
∠CAO + ∠ACO + ∠AOC = 180°
19° + 19° + ∠AOC = 180°
∠AOC = 180° — 19° — 19° = 142°
ответ:
∠AOC = 142°
Как то так не гарантирую что это правильно
но, получив "красивый" ответ --- угол равен 45°,
захотелось найти более простое решение
(ведь не указано для какого класса решается задача и, возможно, тригонометрия автору еще не известна)))
не знаю--получилось ли проще...
т.к. один данный угол является половиной другого,
то очень хочется связать их в один треугольник...
если провести биссектрису угла в 30°, то
получим равнобедренный треугольник с углами при основании по 15°,
в нем хочется построить высоту...
но тогда и к биссектрисе провести перпендикуляр и получим
еще один равнобедренный треугольник с углом при вершине 30°)))
осталось рассмотреть получившиеся треугольники...
один из них (выделила желтым цветом) окажется равносторонним...
другой (прямоугольный) окажется равнобедренным...
(ярко желтые уголки--по 45°)