Висоти двох вертикальних стовпів дорівнюють 5м і 12,5м. Відстань між ними 10м. Знайти найменшу довжину троса, яким можна з’єднати верхні кінці стовпів?
Поскольку предложение "меньшее основание равно 2 в 4 степени корня из 3" не совсем понятно, примем, что меньшее основание равно 2 корня 4 степени из 3. Чтобы не путаться с корнями, пусть корень 4-й степени из 3 равен "а". Тупой угол в прямоугольной трапеции может быть только один. Следовательно, ВС=CD=2a и <BCD=120°. Опустим высоту СН. Тогда <HCD= 120°-90°=30°. В прямоугольном треугольнике НСD катет HD лежит против угла 30° и значит равен "а". Тогда катет СН (высота трапеции) равен а√3. AD=BC+HD или AD=2a+a=3a. Площадь трапеции равна S=(AD+BC)*CH/2 = (2а+3a)*a√3/2 =a²*5√3/2. Вспомним, что а= 3^(1/4). Тогда а²=3^(1/2) = √3. S=√3*5√3/2 = 7,5 ед².
EB=EF, значит треугольник EBF - равнобедренный.
и угол EBF равен углу EFB.
Углы ВАС и ВСА равны, т.к. треугольник АВС равнобедренный, значит можно записать, что угол АСВ равен (180°-∠АВС) / 2
Угол CFE и EFB смежные, и в сумме 180°
Значит ∠EFC = 180°-∠EFВ = 180°-∠EBF = 180°-∠АВС
Биссектриса делит угол EFC пополам, значит
∠KFC = 1/2 EFC = (180°-∠АВС) / 2 = ∠АСВ
Поскольку ∠АСВ=∠KCF=∠KFC, то треугольник СKF имеет равные углы при основании CF следовательно он равнобедренный.
А в равнобедренном треугольнике СКF KC=KF, что и требовалось доказать.
2 корня 4 степени из 3.
Чтобы не путаться с корнями, пусть корень 4-й степени из 3 равен "а".
Тупой угол в прямоугольной трапеции может быть только один.
Следовательно, ВС=CD=2a и <BCD=120°.
Опустим высоту СН. Тогда <HCD= 120°-90°=30°.
В прямоугольном треугольнике НСD катет HD лежит против угла 30° и значит равен "а". Тогда катет СН (высота трапеции) равен а√3.
AD=BC+HD или AD=2a+a=3a.
Площадь трапеции равна
S=(AD+BC)*CH/2 = (2а+3a)*a√3/2 =a²*5√3/2.
Вспомним, что а= 3^(1/4). Тогда а²=3^(1/2) = √3.
S=√3*5√3/2 = 7,5 ед².