В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
nastalove22
nastalove22
20.07.2022 17:52 •  Геометрия

Визнач, чи можна з даних відрізків скласти трикутник. Довжини відрізків дорівнюють ,очень

Показать ответ
Ответ:
grasdas
grasdas
09.07.2022 06:41
▪Рассмотрим Δ ABC - осевое сечение данного конуса ( равнобедренный треугольник ) , тогда точка O - центр вписанного шара , точка Н - центр основания конуса, ОН = OM = ON = r , AH = HC = R , ∠А = а - искомый угол между образующей и основанием конуса.▪Точка О является центром вписанной окружности в Δ АВС ⇒  точка О - точка пересечения биссектрис  ⇒  ∠ВАО = ∠НАО = а/2 ▪В  ΔAHB:  BH = AH•tga = R•tga    B  ΔHAO:  OH = AH•tg(a/2) = R•tg(a/2)▪ Vконуса  = ( п•AH²•BH )/3 = ( пR²•R•tga )/3 = ( пR³tga )/3     Vшара = ( 4п•ОН³ )/3 = (  4п•R³•tg³(a/2)  )/3▪ Vконуса / Vшара = tga / 4tg³(a/2)  ;    tga = 2tg(a/2) /  1 - tg²(a/2)  ⇒   Vконуса / Vшара = 2tg(a/2) /  4tg³(a/2)•( 1 - tg²(a/2)  )  = 1 / 2tg²(a/2) - 2tg⁴(a/2)  = k   2k•tg⁴(a/2) - 2k•tg²(a/2) + 1 = 0   D = ( 2k )² - 4•2k = 4k² - 8k = 4•( k² - 2k )   4•( k² - 2k ) ≥ 0  ⇒  k ≥ 2   tg²(a/2) = ( 2k +- 2√(k² - 2k) )/4k = ( k +- √(k² - 2k) )/ 2k  ⇒  k = 9/4  ⇒   tg₁²(a/2) = 2/3  ⇒  tg(a/2) = √(2/3) ≈ 0,82   tg₂²(a/2) = 1/3  ⇒   tg(a/2) = √(1/3) ≈ 0,58 Из условия следует, что tg(a/2) = r / R  < 0,6  ⇒  tg(a/2) = √3/3  ⇒   a/2 = п/6  ⇒   а = п/3 = 60° ΔАВС - равносторонний ,  AB = BC = AC  ⇒  L = 2R = D ,  r = √3R/3ОТВЕТ: 60°
Вконус вписан шар. найдите угол между образующей конуса и плоскостью основания конуса, если отношени
Вконус вписан шар. найдите угол между образующей конуса и плоскостью основания конуса, если отношени
0,0(0 оценок)
Ответ:
упоротаялялька
упоротаялялька
28.03.2023 16:39

Радиус основания конуса равен 6 см, а образующая наклонена к 

плоскости основания под углом 30°. Найдите:

а) площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми 60°;


Плоскость сечения ограничена по бокам двумя образующими. 

Следовательно, это равнобедренный треугольник.

Угол между образующими= 60°.

Следовательно, сечение представляет из себя равносторонний треугольник, .Площадь равностороннего треугольника можно найти несколькими 

а) по классической формуле

S=ah:2

б)   по формуле Герона

в) по формуле площади для равностороннего треугольника,т.е. квадрата стороны, умноженной на синус угла между сторонами, деленному на два. 

S=(a²√3):4 . 

Найдем образующую, которая образует с плоскостью основания угол 30°

АМ=АО:соs (30°)

АМ=6:(√3÷2)=4√3 см

Sсеч=(4√3)²*√3):4=48√3):4=12√3 см²


б) площадь боковой поверхности конуса.

Боковая площадь поверхности круглого конуса равна произведению 

половины окружности основания на образующую 

S=0,5 C* l=π r l,

 где С- длина окружности основания, l-образующая

Sбок=π 6*4√3=24√3 см²


Подробнее - на -

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота