АР=ТД= (АД-ВС)/2=3 м Опустим высоту ВР. В ΔАВР ∠АВР=90-60=30°, тогда АВ=2АР=6м (катет в прямоугольном Δ против угла в 30° равен половине гипотенузы) Дальше решим через теорему косинусов: ВР=√(АВ²+АР²-2*АВ*АР*cos60)=√(36+9-2*6*3*1/2)=√27=3√3м. ответ: высота насыпи=3√3м. Вторая задача: если угол при вершине равен 20 градусов, то углы в основании треугольника равны (180-20)/2=80 градусов. Корень из 3 на 2 это синус 60 градусов, 80 градусов больше 60, значит синус угла при основании этого треугольника больше √3/2
Опустим высоту ВР. В ΔАВР ∠АВР=90-60=30°, тогда АВ=2АР=6м (катет в прямоугольном Δ против угла в 30° равен половине гипотенузы)
Дальше решим через теорему косинусов:
ВР=√(АВ²+АР²-2*АВ*АР*cos60)=√(36+9-2*6*3*1/2)=√27=3√3м.
ответ: высота насыпи=3√3м. Вторая задача: если угол при вершине равен 20 градусов, то углы в основании треугольника равны (180-20)/2=80 градусов. Корень из 3 на 2 это синус 60 градусов, 80 градусов больше 60, значит синус угла при основании этого треугольника больше √3/2
Найди площадь круга, вписанного в равнобедренную трапецию с основаниями длиной 6 см и 12 см и периметром 36 см
Объяснение:
АВСМ- описанная трапеция⇒ суммы длин противоположных сторон равны. Т.е 6+12=АВ+СМ⇒ АВ=СМ=9 см. Пусть ВК⊥АМ , СР⊥АМ.
S(круга)=πr². Радиус вписанной в трапецию окружности будет равен половине высоты трапеции.
Т.к. ВК⊥АМ , СР⊥АМ, то КВСР-прямоугольник ⇒
КР=6 см, АК=РМ=(12-6) :2=3 (см).
ΔАВК-прямоугольный, по т. Пифагора ВК=√(9²-3²)=√18=3√2(см).
ВК-высота трапеции, значит r=(3√2)/2 см.
S(круга)= π ( (3√2)/2 )²=4,5π (см²)