Найдем площадь основания параллелепипеда S=аbsin60°=6·6·√3/2=18√3.
Рассмотрим треугольник, сторонами которого являются: меньшая диагональ нижнего основания параллелепипеда, меньшая диагональ параллелепипеда и высота параллелепипеда.
Этот треугольник прямоугольный с острыми углами по 45°. Значит его катеты равны.
Меньшая диагональ основания (ромба) делит ромб на два равносторонних треугольника, значит меньшая диагональ равна 6 см и высота также равна 6 см.
Найдем площадь основания параллелепипеда S=аbsin60°=6·6·√3/2=18√3.
Рассмотрим треугольник, сторонами которого являются: меньшая диагональ нижнего основания параллелепипеда, меньшая диагональ параллелепипеда и высота параллелепипеда.
Этот треугольник прямоугольный с острыми углами по 45°. Значит его катеты равны.
Меньшая диагональ основания (ромба) делит ромб на два равносторонних треугольника, значит меньшая диагональ равна 6 см и высота также равна 6 см.
V=Sh=6·18√3=108√3 cм³.
ответ: 108√3 см³.
Я новичок так что хз правильно или нееет..
1) треугольник АВС и треугольник А1В1С1 равны
значит ВА=В1А1и угол А=угол А1
Прямоугольные треугольники DВА и D1В1А1 равны за гипотенузой(ВА=В1А1) и острым углом(угол А=угол А1)
Из равности треугольников слдует равенство ВD = В1D1, то есть требуемое
2) Прямоугольные треугольники ADK и CEP равны за первым признаком равенства треугольников
угол K=угол Р=90 градусов АК=РС,DK=РЕ по условию.
Из равенства треугольников следует равенство углов
угол А=угол С, а за признаком равнобедрнного треугольника
треугольник АВС равнобедренный и АВ=ВС, что и требовалось доказать.