Задание1) Угол КАВ, образованный касательной АК и хордой АВ, проходящей через точку касания А, равен половине величины дуги АВ, заключённой между его сторонами, центральный угол АОВ тоже опирается на дугу АВ, а угол АСВ- вписанный угол, опирающийся на дугу АВ, поэтому равен половине величины центрального угла.
Т.о., углы АСВ и КАВ равны.
Задание 2. Т.к. углы АВК И ВАС- это внутренние накрест лежащие при КВ║АС и секущей АВ, то они равны, пусть в треугольнике АСВ углы при основании АВ углы А и В, например равны β, а угол С равен α, в сумме они составляют 2β+α=180°⇒α=180-2β; В треугольнике АВК угол А равен β,угол А равен α, чтобы найти угол К, надо от 180°отнять (α+β), заменим α=180-2β. получим 180-(180-2β)-β=180°-180°+2β-β=β.
Значит, при основании ВК есть два угла, равные β. По признаку ΔАВК- равнобедренный.
Задание 3. Найдем площадь треугольников АСВ и КАВ. У них есть по паре равных углов. значит, по 2 признаку подобия КАВ и АСВ подобны, значит, сходственные стороны у них пропорциональны. ВС/АВ=АС/АК=к- коэффициент пропорциональности. Синусы равных углов равны.
Площадь треугольника АСВ равна (BC*АС*sin∠ACB)=(BC²*sin∠ACB); площадь треугольника КАВ равна (АК*АВ*sin∠КАВ)=(АВ²*sin∠КАВ);
Найдем теперь отношение площадей
sΔАСВ/sΔКАВ=(BC²*sin∠ACB)/(АВ²*sin∠КАВ)=к², откуда видно, что от величины угла АСВ при данном условии отношение площадей не зависит.
Сумма всег углов тр-ка равна 180 градусов, поэтому разделим 180 пропорционально числам 2,3,4.
1) 180 : (2+3+4) =20 градусов приходится на одну часть
2) 20*2 =40 градусов первый угол
3) 20*3 =60 градусов -второй угол
4) 20*4 =80 градусов третий угол
Вторая задача
1) Угол между касательной АС и хордой АВ равен половине дуги АВ, то есть дуга АВ содержит 75*2 =150 градусов
2) Центральный угол АОВ измеряется дугой АВ и равен 150 градусов
ответ <АОВ =150 градусов
Третья задача
Треугольники равны по стороне АС ( общая сторона) и двум углам, так как
1) <ВАС = <АСВ ( в равнобедренном тр-ке углы при основании равны)
2) <ДАС =<АСЕ ( по свойству биссектрисы, она делит угол пополам)
Задание1) Угол КАВ, образованный касательной АК и хордой АВ, проходящей через точку касания А, равен половине величины дуги АВ, заключённой между его сторонами, центральный угол АОВ тоже опирается на дугу АВ, а угол АСВ- вписанный угол, опирающийся на дугу АВ, поэтому равен половине величины центрального угла.
Т.о., углы АСВ и КАВ равны.
Задание 2. Т.к. углы АВК И ВАС- это внутренние накрест лежащие при КВ║АС и секущей АВ, то они равны, пусть в треугольнике АСВ углы при основании АВ углы А и В, например равны β, а угол С равен α, в сумме они составляют 2β+α=180°⇒α=180-2β; В треугольнике АВК угол А равен β,угол А равен α, чтобы найти угол К, надо от 180°отнять (α+β), заменим α=180-2β. получим 180-(180-2β)-β=180°-180°+2β-β=β.
Значит, при основании ВК есть два угла, равные β. По признаку ΔАВК- равнобедренный.
Задание 3. Найдем площадь треугольников АСВ и КАВ. У них есть по паре равных углов. значит, по 2 признаку подобия КАВ и АСВ подобны, значит, сходственные стороны у них пропорциональны. ВС/АВ=АС/АК=к- коэффициент пропорциональности. Синусы равных углов равны.
Площадь треугольника АСВ равна (BC*АС*sin∠ACB)=(BC²*sin∠ACB); площадь треугольника КАВ равна (АК*АВ*sin∠КАВ)=(АВ²*sin∠КАВ);
Найдем теперь отношение площадей
sΔАСВ/sΔКАВ=(BC²*sin∠ACB)/(АВ²*sin∠КАВ)=к², откуда видно, что от величины угла АСВ при данном условии отношение площадей не зависит.