Отрезок ЕС равен 1 см.
Объяснение:
Требуется найти отрезок ОС.
Дано: ΔАВС - равнобедренный;
∠А = 75°;
CD ⊥ АВ; DE ⊥ BC;
ВЕ = 3 см.
Найти: ЕС.
1. Рассмотрим ΔΔАВС - равнобедренный;
⇒ ∠А = ∠С = 75°
⇒ ∠В = 180° - (75° + 75°) = 30°
2. Рассмотрим ΔDBE - прямоугольный.
∠В = 30°
Пусть DE = x см, тогда DB = 2x см.
По теореме Пифагора:
BD² = DE² + BE²
4x² = x² + 9
3x² = 9
x² = 3
x = √3
DE = √3 см
3. Рассмотрим ΔАDC - прямоугольный.
Сумма острых углов прямоугольного треугольника равна 90°.
⇒ ∠1 = 90° - ∠А = 90° - 75° = 15°
4. Рассмотрим ΔEDC - прямоугольный.
∠2 = ∠С - ∠1 = 75° - 15° = 60°
∠3 = 90° - ∠2 = 90° - 60° = 30°
Пусть ЕС = у см, тогда DC = 2у см (катет, лежащий против угла 30°)
DC² = DE² + EC²
4y² = 3 + y²
3y² = 3
y² = 1
y = 1
a = 5 см,
b = 4 см,
c = 7 см.
Найти R.
Запишем теорему синусов:
числитель и знаменатель дроби слева последнего равенства домножим на (b·c).
С учётом того, что , где S - площадь данного в условии треугольника, имеем
Площадь треугольника можно найти по формуле Герона:
, где
Найдем, сначала, площадь треугольника.
p = (5+4+7)/2 = (9+7)/2 = 16/2 = 8 см.
S = √(8·(8-5)·(8-4)·(8-7)) = √(8·3·4·1) = 4·(√6) см²
Теперь найдем радиус описанной окружности.
R = 5·4·7/(4·4·(√6)) = 5·7/(4·(√6)) = 35·(√6)/(4·6) = 35·(√6)/24 см.
Теперь найдём длину окружности, описанной около данного треугольника.
L = 2πR = 2π·35·(√6)/24 см = π·35·(√6)/12 см.
Отрезок ЕС равен 1 см.
Объяснение:
Требуется найти отрезок ОС.
Дано: ΔАВС - равнобедренный;
∠А = 75°;
CD ⊥ АВ; DE ⊥ BC;
ВЕ = 3 см.
Найти: ЕС.
1. Рассмотрим ΔΔАВС - равнобедренный;
Углы при основании равнобедренного треугольника равны.⇒ ∠А = ∠С = 75°
Сумма углов треугольника равна 180°.⇒ ∠В = 180° - (75° + 75°) = 30°
2. Рассмотрим ΔDBE - прямоугольный.
∠В = 30°
Катет, лежащий против угла в 30°, равен половине гипотенузы.Пусть DE = x см, тогда DB = 2x см.
По теореме Пифагора:
BD² = DE² + BE²
4x² = x² + 9
3x² = 9
x² = 3
x = √3
DE = √3 см
3. Рассмотрим ΔАDC - прямоугольный.
Сумма острых углов прямоугольного треугольника равна 90°.
⇒ ∠1 = 90° - ∠А = 90° - 75° = 15°
4. Рассмотрим ΔEDC - прямоугольный.
∠2 = ∠С - ∠1 = 75° - 15° = 60°
∠3 = 90° - ∠2 = 90° - 60° = 30°
Пусть ЕС = у см, тогда DC = 2у см (катет, лежащий против угла 30°)
По теореме Пифагора:
DC² = DE² + EC²
4y² = 3 + y²
3y² = 3
y² = 1
y = 1
Отрезок ЕС равен 1 см.
a = 5 см,
b = 4 см,
c = 7 см.
Найти R.
Запишем теорему синусов:
числитель и знаменатель дроби слева последнего равенства домножим на (b·c).
С учётом того, что , где S - площадь данного в условии треугольника, имеем
Площадь треугольника можно найти по формуле Герона:
, где
Найдем, сначала, площадь треугольника.
p = (5+4+7)/2 = (9+7)/2 = 16/2 = 8 см.
S = √(8·(8-5)·(8-4)·(8-7)) = √(8·3·4·1) = 4·(√6) см²
Теперь найдем радиус описанной окружности.
R = 5·4·7/(4·4·(√6)) = 5·7/(4·(√6)) = 35·(√6)/(4·6) = 35·(√6)/24 см.
Теперь найдём длину окружности, описанной около данного треугольника.
L = 2πR = 2π·35·(√6)/24 см = π·35·(√6)/12 см.