Вкажіть, в якому випадку тонки А, В і С не лежать на одній прямій 1)АВ = 9см, ВС = 4см, АС = 5см; 2)AB = 12см, ВС = 7см, АС = 6см; 3)АВ = 7см, ВС = 14см, АС = 7см; 4)AB = 9см, ВС = 15см, АС = 6см. (розгорнута відповідь)
Пусть дан прямоугольный треугольник АВС, в котором угол В-прямой. Окружность с центром в точке О, которая лежит на гипотенузе касается катета ВС в точке Т и проходит через точку А. Гипотенуза АС пересекает окружность в точке К. К находится между О и А.
Известно, что катеты АВ=12 и ВС=16.
Проведем радиус ОТ. Так как Т точка касания , то треугольник ОТС-прямоугольный и угол Т -прямой.
r=7.5 cm
Объяснение:
Пусть дан прямоугольный треугольник АВС, в котором угол В-прямой. Окружность с центром в точке О, которая лежит на гипотенузе касается катета ВС в точке Т и проходит через точку А. Гипотенуза АС пересекает окружность в точке К. К находится между О и А.
Известно, что катеты АВ=12 и ВС=16.
Проведем радиус ОТ. Так как Т точка касания , то треугольник ОТС-прямоугольный и угол Т -прямой.
Косинус угла С равен:
cosC=BC/AC
Найдем АС по т. Пифагора из треугольника АВС:
АС=sqr(AB^2+BC^2)=sqr(144+256)=sqr400=20
cosC=16/20=4/5
sinC =sqr(1-cosC^2)=sqr(1-16/25)=sqr(9/25)=3/5
ОС=ОТ/sinC=r*5/3=OK+KC
5/3*r=r+KC
KC=2/3*r
AC=20=2r+2/3*r
8*r/3=20
8r=60
r=60/8
r=7.5 cm
обозначим меньший треугольник АВС, больший треугольник А1В1С1,
по условию эти треугольники подобны...
Р(АВС) : Р(А1В1С1) = 4:5 (это и есть коэффициент подобия)
известно:
периметры подобных фигур относятся как коэффициент подобия,
площади относятся как квадрат коэффициента подобия
(объемы относятся как куб коэфф.подобия)
S(АВС) : S(А1В1С1) = 16:25
или 25*S(АВС) = 16*S(А1В1С1)
S(А1В1С1) = (25/16)* S(АВС) АВС--меньший треугольник
S(А1В1С1) - S(АВС) = 27 (см²) (по условию)
(25/16)*S(АВС) - S(АВС) = 27 (см²)
S(АВС)*((25/16) - 1) = 27 (см²)
S(АВС)*(9/16) = 27
S(АВС) = 27*16/9 = 3*16 = 48 (см²)