Выполним дополнительное построение. Перенесем диагональ BD параллельно в точку C. На продолжении стороны AD поставим точку K. DK = BC Тогда АК = AD + DK = AD + BC - сумме оснований трапеции. А так как дана средняя линия, которая равна полусумме оснований трапеции, то сумма оснований в два раза больше средней линии. AD+ ВС = 25 см Площадь трапеции равна площади треугольника АСК S ( трапеции) = 1/2 (AD + BC)·h= 1/2 AK·h =S (Δ ACK) Но так как треугольник со сторонами 15, 20 и 25 прямоугольный 25²=15² + 20² 625 = 225 + 400 Найдем площадь треугольника как половину произведения катетов S (Δ ACK) = 15·20/2= 150 кв. см
В параллелограмме KLMN точка E - середина LM. Известно, что EK = EN. Докажите, что заданный параллелограмм - прямоугольник.========================================================================= Решение. Так как ЕК = EN, то треугольник EKN - равнобедренный, значит ∠1 = ∠2 ∠3=∠1 как внутренние накрест лежащие при параллельных прямых LM и KN и секущей КЕ ∠2= ∠4как внутренние накрест лежащие при параллельных прямых LM и KN и секущей ЕN Получаем, что ∠3= ∠4 Треугольники LEK и EMN по двум сторонам и углу между ними: ЕК = EN, LE = EN - так как Е - середина LM ∠3= ∠4 Из равенства треугольников следует, что ∠L= ∠M Противоположные углы параллелограмма равны между собой ∠L= ∠N ∠K= ∠M И так как ∠L= ∠M, то все углы параллелограмма равны между собой. и равны 90°=360°:4 ∠L= ∠N= ∠K= ∠M=90° КLMN - прямоугольник. :
Перенесем диагональ BD параллельно в точку C.
На продолжении стороны AD поставим точку K.
DK = BC
Тогда
АК = AD + DK = AD + BC - сумме оснований трапеции.
А так как дана средняя линия, которая равна полусумме оснований трапеции, то сумма оснований в два раза больше средней линии.
AD+ ВС = 25 см
Площадь трапеции равна площади треугольника АСК
S ( трапеции) = 1/2 (AD + BC)·h= 1/2 AK·h =S (Δ ACK)
Но так как треугольник со сторонами 15, 20 и 25 прямоугольный
25²=15² + 20²
625 = 225 + 400
Найдем площадь треугольника как половину произведения катетов
S (Δ ACK) = 15·20/2= 150 кв. см
ответ. 150 кв. см
Решение.
Так как ЕК = EN, то треугольник EKN - равнобедренный, значит ∠1 = ∠2
∠3=∠1 как внутренние накрест лежащие при параллельных прямых LM и KN и секущей КЕ
∠2= ∠4как внутренние накрест лежащие при параллельных прямых LM и KN и секущей ЕN
Получаем, что ∠3= ∠4
Треугольники LEK и EMN по двум сторонам и углу между ними:
ЕК = EN,
LE = EN - так как Е - середина LM
∠3= ∠4
Из равенства треугольников следует, что ∠L= ∠M
Противоположные углы параллелограмма равны между собой
∠L= ∠N
∠K= ∠M
И так как ∠L= ∠M, то все углы параллелограмма равны между собой.
и равны 90°=360°:4
∠L= ∠N= ∠K= ∠M=90°
КLMN - прямоугольник.
: