Номер 1
Дано. DE||АС ;АВ=21;AD=7 см
Доказать. т-к АВС~т-ку DBE
Решение
Треугольники АВС и DBE подобны по первому признаку подобия
<В-общий,<А=<D,как соответственные углы при пересечении параллельных прямых DE и AD и секущей АВ
Так как коэффициент подобия равен отношению сходственных сторон,то
k=AB:DB
DB=AB-AD=21-7=14
k=21:14=3/2
Номер 56
Дано: <PQC=<A;BC=18 cм;СР=6 см;СQ=4 cм
АС-??
ТреугольникиCPQ и CBA подобны по первому признаку подобия
<С-общий;<CQP=<PAB,по условию
Стороны CP и ВС ,CQ и AC сходственные стороны подобных треугольников,поэтому коэффициент подобия равен
k=CP:BC=6:18=1/3
k=CQ:AC
AC=4:1/3=12 см
Номер 3
Дано: <В=<D;AF:CF=3/2;BF=15 cм
DF-??
Треугольники АВF и СDF подобны по первому признаку подобия треугольников
<В=<D поусловию
<АFB=<DFC,как вертикальные
АF и FC- сходственные стороны подобных треугольников поэтому коэффициент подобия равен
k=AF:CF=3/2
BF и DF тоже сходственные стороны,поэтому
ВF:DF=3/2
DF=BF:3/2=10 cм
Номер 4
Дано:трапеция;ВО=3,2 см;OD=6,4 см;
ВС=4,8 см
АD-??
Треугольники АОD и СОВ подобные по первому признаку подобия треугольников
<1=<4,как накрест лежащие
<2=<3,как накрест лежащие
при пересечении параллельных прямых ВС и АD секущими ПС и ВD
ОD и ОВ сходственные стороны подобных треугольников,поэтому
k=OD:OB=6,4:3,2=2
AD и ВС тоже сходственные стороны
АD:BC=2
АD=BC•2=4,8•2=9,6
Объяснение:
1)Пусть АВС-равнобедренный треугольник,АС-основание=12 см.
АВ=ВС=10 см
Проведем высоту ВН
Так как треугольник равнобедренный,то высота,проведенная к основанию,является и медианой,и биссектрисой.
Так как ВН-высота,то образуется прямоугольный треугольник АВН,причем из-за того,что ВН ещё и медиана,то АН=НС=12/2=6см.
Теперь по теореме Пифагора находим катет ВН
ВН=корень из(АВ^2-АН^2)
ВН=корень из(64)
ВН=8см
Sтреугольника АВС=(ВН*АС)/2
S=(8*12)/2
S=48 кв. см
ответ:48 кв.см.
2)параллелограмм ABCD
Проведём из угла В на AD высоту BK.
∆ABK-прямоугольный. ےА=30°
Следовательно BK=AB:2, как катет, лежащий против угла 30°
AB=12. Тогда BK=6; S=16×6=96 кв.см.
ответ:96 кв.см.
3)Дано:
АВСD-трапеция,
АВ=СD=13 см.
АD=20см
ВС=10см
Найти:S
Проводим высоту ВН,так как трапеция равнобедренная,то АН будет равен (20-10)/2=5 см
Образовался прямоугольный треугольник АВН,находим катет(высоту) ВН
ВН=корень из(АВ^2-AH^2)
ВН=корень из(169-25)
ВН=12 см.
S=((АD+ВС)/2)*ВН
S((20+10)/2)*12=180 кв.см.
ответ:180 кв.см
Подробнее - на -
Номер 1
Дано. DE||АС ;АВ=21;AD=7 см
Доказать. т-к АВС~т-ку DBE
Решение
Треугольники АВС и DBE подобны по первому признаку подобия
<В-общий,<А=<D,как соответственные углы при пересечении параллельных прямых DE и AD и секущей АВ
Так как коэффициент подобия равен отношению сходственных сторон,то
k=AB:DB
DB=AB-AD=21-7=14
k=21:14=3/2
Номер 56
Дано: <PQC=<A;BC=18 cм;СР=6 см;СQ=4 cм
АС-??
ТреугольникиCPQ и CBA подобны по первому признаку подобия
<С-общий;<CQP=<PAB,по условию
Стороны CP и ВС ,CQ и AC сходственные стороны подобных треугольников,поэтому коэффициент подобия равен
k=CP:BC=6:18=1/3
k=CQ:AC
AC=4:1/3=12 см
Номер 3
Дано: <В=<D;AF:CF=3/2;BF=15 cм
DF-??
Треугольники АВF и СDF подобны по первому признаку подобия треугольников
<В=<D поусловию
<АFB=<DFC,как вертикальные
АF и FC- сходственные стороны подобных треугольников поэтому коэффициент подобия равен
k=AF:CF=3/2
BF и DF тоже сходственные стороны,поэтому
ВF:DF=3/2
DF=BF:3/2=10 cм
Номер 4
Дано:трапеция;ВО=3,2 см;OD=6,4 см;
ВС=4,8 см
АD-??
Треугольники АОD и СОВ подобные по первому признаку подобия треугольников
<1=<4,как накрест лежащие
<2=<3,как накрест лежащие
при пересечении параллельных прямых ВС и АD секущими ПС и ВD
ОD и ОВ сходственные стороны подобных треугольников,поэтому
k=OD:OB=6,4:3,2=2
AD и ВС тоже сходственные стороны
АD:BC=2
АD=BC•2=4,8•2=9,6
Объяснение:
1)Пусть АВС-равнобедренный треугольник,АС-основание=12 см.
АВ=ВС=10 см
Проведем высоту ВН
Так как треугольник равнобедренный,то высота,проведенная к основанию,является и медианой,и биссектрисой.
Так как ВН-высота,то образуется прямоугольный треугольник АВН,причем из-за того,что ВН ещё и медиана,то АН=НС=12/2=6см.
Теперь по теореме Пифагора находим катет ВН
ВН=корень из(АВ^2-АН^2)
ВН=корень из(64)
ВН=8см
Sтреугольника АВС=(ВН*АС)/2
S=(8*12)/2
S=48 кв. см
ответ:48 кв.см.
2)параллелограмм ABCD
Проведём из угла В на AD высоту BK.
∆ABK-прямоугольный. ےА=30°
Следовательно BK=AB:2, как катет, лежащий против угла 30°
AB=12. Тогда BK=6; S=16×6=96 кв.см.
ответ:96 кв.см.
3)Дано:
АВСD-трапеция,
АВ=СD=13 см.
АD=20см
ВС=10см
Найти:S
Проводим высоту ВН,так как трапеция равнобедренная,то АН будет равен (20-10)/2=5 см
Образовался прямоугольный треугольник АВН,находим катет(высоту) ВН
ВН=корень из(АВ^2-AH^2)
ВН=корень из(169-25)
ВН=12 см.
S=((АD+ВС)/2)*ВН
S((20+10)/2)*12=180 кв.см.
ответ:180 кв.см
Подробнее - на -
Объяснение: