Внешний угол треугольника на 63 больше меньшего внутреннего угла, не смежного с ним, а внутренние углы, не смежные с ним, относятся как 4:7.Найти углы треугольника
Пусть х см – одна сторона прямоугольника, тогда другая сторона будет равна (х + 6) см. Т.к. площадь это произведение сторон и она составляет 112 см2, тогда получим уравнение:
х * (х + 6) = 112,
х2 + 6х = 112,
х2 + 6х - 112 = 0.
Для решения рассчитываем, чему равен дискриминант:
Сумма углов трапеции как четырехугольника равна 360 градусам(180*(n-2),где n-число сторон n-угольника).Так как трапеция равнобедренная,то углы при основании равны,а значит равны и два других угла.Пусть величина одного из углов,например,BAC равна x,тогда величина другого угла,например,ABC равна x+60. Так как сумма всех углов равна 360, то сумма двух из них равна 180. Получаем уравнение x+x+60=180, откуда x=60. Значит величина одного угла равна 60, а другого соответственно 120, то есть BAC=ADC=60, а ABC=BCD=120.
Пусть х см – одна сторона прямоугольника, тогда другая сторона будет равна (х + 6) см. Т.к. площадь это произведение сторон и она составляет 112 см2, тогда получим уравнение:
х * (х + 6) = 112,
х2 + 6х = 112,
х2 + 6х - 112 = 0.
Для решения рассчитываем, чему равен дискриминант:
D = b2 - 4ac,
D = 36 - 4 * (-112) = 36 + 448 = 484.
Находим корни уравнения:
х = (-b ± √D) / 2a
х = (-6 ± 22) / 2
х1 = -14, х2 = 8.
Длина может быть только положительной величиной.
Тогда длина составит:
8 + 6 = 14 (см).
ответ: стороны равны 8 см и 14 см.
Объяснение: