Внутри тупого угла авс отмечена точка f ,через нее проведены прямые параллельные сторонам угла.найдите угол abc если больший угол с вершиной в точке f равен 146 градусов.сделайте рисунок
У правильной треугольной пирамиды основание - равносторонний треугольник, высота опускается в его центр. Смотри рисунок. Слева показана сама пирамида, справа ее основание. Из прямоугольного треугольника SDO ясно, что OD = L*sin α Но мы знаем, что точка О - центр треугольника - делит высоту в отношении 1 : 2, то есть CD = 3*OD = 3L*sin α С другой стороны, мы знаем, что в равностороннем треугольнике высота CD = a*√3/2, где a = AB = AC = BC - сторона треугольника. Получаем a*√3/2 = 3L*sin α a = 6/√3*L*sin α = 6√3/3*L*sin α = 2√3*L*sin α Площадь боковой стороны S(ABS) = S(ACS) = S(BCS) = a*L/2 = 2√3*L*sin α*L/2 = √3*L^2*sin α Площадь всей боковой поверхности пирамиды S(бок) = 3*S(ABS) = 3√3*L^2*sin α
Тангенс угла - это отношения противолежащего катета к прилежащему.
Выберем треугольник с целым количеством клеток: 1 клетка вправоо от А и 3 клетки вверх:
tg ∠ А = 3: 1 = 3.
ответ: 3
Задача № 2.
Медиана соединяет вершину прямого угла с серединой гипотенузы.
Длину гипотенузы х находим по теореме Пифагора, зная размеры катетов (один 3 клетки, другой 4 клетки):
х = √(3^2 + 4^2) = √25 = 5
1/2 гипотенузы = 5 : 2 = 2,5 см
Если данный треугольник достроить до прямоугольника, то в этом прямоугольнике гипотенуза треугольника будет диагональю, а так как в точке пересечения диагонали прямоугольника делятся пополам, то длина медианы будет равна 1/2 диагонали и соответственно 1/2 длины гипотенузы.
Длина медианы = равна 1/2 гипотенузы:
5 : 2 = 2,5 см.
ответ: 2,5 см
Задача № 3.
1) Рассчитаем площадь параллелограмма. Она равна произведению основания на высоту.
35 * 21 = 735.
2) Но если бы мы считали эту же площадь через другую сторону (10) и другую высоту (х), то должны были бы получить такой же ответ:
10 * х = 735,
откуда х = 735 : 10 = 73,5
ответ: 73,5
Задача № 4.
Согласно рисунку, расстояние от точки А до прямой ВС составляет 2 клетки.
Масштаб (сколько сантиметров в одной клетке) не задан, Поэтому измерим длину клетки по школьной тетради.
х = 5 мм
2 х = 2 * 5 = 10 мм.
1 см = 10 мм
10 : 10 = 1 см
ответ: 1 см
Задача № 5.
Площадь трапеции равна произведению полусуммы оснований на высоту.
1) Нижнее основание = 7 + 15 = 22
2) Верхнее основание = 5
3) Проверим, является отрезом 24 см высотой. Согласно теореме Пифагора должно соблюдаться равенство:
Слева показана сама пирамида, справа ее основание.
Из прямоугольного треугольника SDO ясно, что OD = L*sin α
Но мы знаем, что точка О - центр треугольника - делит высоту в отношении 1 : 2, то есть
CD = 3*OD = 3L*sin α
С другой стороны, мы знаем, что в равностороннем треугольнике
высота CD = a*√3/2, где a = AB = AC = BC - сторона треугольника.
Получаем
a*√3/2 = 3L*sin α
a = 6/√3*L*sin α = 6√3/3*L*sin α = 2√3*L*sin α
Площадь боковой стороны
S(ABS) = S(ACS) = S(BCS) = a*L/2 = 2√3*L*sin α*L/2 = √3*L^2*sin α
Площадь всей боковой поверхности пирамиды
S(бок) = 3*S(ABS) = 3√3*L^2*sin α
№ 1 - ответ: 3
№ 2 - ответ: 2,5 см
№ 3 - ответ: 73,5
№ 4 - ответ: 1 см
№ 5 - ответ: 324
Объяснение:
Задача № 1.
Тангенс угла - это отношения противолежащего катета к прилежащему.
Выберем треугольник с целым количеством клеток: 1 клетка вправоо от А и 3 клетки вверх:
tg ∠ А = 3: 1 = 3.
ответ: 3
Задача № 2.
Медиана соединяет вершину прямого угла с серединой гипотенузы.
Длину гипотенузы х находим по теореме Пифагора, зная размеры катетов (один 3 клетки, другой 4 клетки):
х = √(3^2 + 4^2) = √25 = 5
1/2 гипотенузы = 5 : 2 = 2,5 см
Если данный треугольник достроить до прямоугольника, то в этом прямоугольнике гипотенуза треугольника будет диагональю, а так как в точке пересечения диагонали прямоугольника делятся пополам, то длина медианы будет равна 1/2 диагонали и соответственно 1/2 длины гипотенузы.
Длина медианы = равна 1/2 гипотенузы:
5 : 2 = 2,5 см.
ответ: 2,5 см
Задача № 3.
1) Рассчитаем площадь параллелограмма. Она равна произведению основания на высоту.
35 * 21 = 735.
2) Но если бы мы считали эту же площадь через другую сторону (10) и другую высоту (х), то должны были бы получить такой же ответ:
10 * х = 735,
откуда х = 735 : 10 = 73,5
ответ: 73,5
Задача № 4.
Согласно рисунку, расстояние от точки А до прямой ВС составляет 2 клетки.
Масштаб (сколько сантиметров в одной клетке) не задан, Поэтому измерим длину клетки по школьной тетради.
х = 5 мм
2 х = 2 * 5 = 10 мм.
1 см = 10 мм
10 : 10 = 1 см
ответ: 1 см
Задача № 5.
Площадь трапеции равна произведению полусуммы оснований на высоту.
1) Нижнее основание = 7 + 15 = 22
2) Верхнее основание = 5
3) Проверим, является отрезом 24 см высотой. Согласно теореме Пифагора должно соблюдаться равенство:
7^2 + 24^2 = 25^
Проверяем получается равенство или нет:
49 + 576 = 625
625 = 625
Значит 24 - высота трапеции.
4) Находим площадь:
((5 + 22) /2) * 24 = 13,5 * 24 = 324
ответ: 324