Выразим, чему равны угла А и В треуг-ка АВС. Пусть <А = х, тогда <B=90-<A=90-x. Треугольники КАС и МВС равнобедренные по условию. Значит, углы при их основаниях КС и МС равны. <CKA=<KCA=<1, <CMB=<MCB=<2 Выразим, чему равны углы 3 и 4 в этих треуг-ах: <3=180-<A=180-x <4=180-<B=180-(90-x)=90+x Выразим углы 1 и 2, зная, что сумма углов треугольника равна 180°: <1=(180-<3):2=(180-(180-x)):2=x:2 <2=(180-<4):2=(180-(90+x)):2=(90-x):2 <KCM=<1+90+<2 <KCM=x:2 + 90 + (90-x):2 = 135°
Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
Пусть <А = х, тогда
<B=90-<A=90-x.
Треугольники КАС и МВС равнобедренные по условию. Значит, углы при их основаниях КС и МС равны. <CKA=<KCA=<1, <CMB=<MCB=<2
Выразим, чему равны углы 3 и 4 в этих треуг-ах:
<3=180-<A=180-x
<4=180-<B=180-(90-x)=90+x
Выразим углы 1 и 2, зная, что сумма углов треугольника равна 180°:
<1=(180-<3):2=(180-(180-x)):2=x:2
<2=(180-<4):2=(180-(90+x)):2=(90-x):2
<KCM=<1+90+<2
<KCM=x:2 + 90 + (90-x):2 = 135°
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0