Вопрос №6 ? Из точки М, которая лежит вне окружности, проведены две касательные. Расстояние от точки М до центра окружности в два раза больше радиуса окружности. Найдите угол между касательными.
Начертите треугольник АВС Постройте образ треугольника АВС: 1) при параллельном переносе на вектор ВС; 2) при симметрии относительно точки А; 3) при симметрии относительно прямой АВ.
ответ подготовленный экспертами Учись.Ru
Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "ЕГЭ (школьный)". Ваш во звучал следующим образом: Начертите треугольник АВС Постройте образ треугольника АВС: 1) при параллельном переносе на вектор ВС; 2) при симметрии относительно точки А; 3) при симметрии относительно прямой АВ.
После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами во будет звучать следующим образом:
А(- 1; 6), В(- 1; - 2)
Найдем длину диаметра по формуле расстояния между точками:
АВ = √((x₁ - x₂)² + (y₁ - y₂)²) = √((- 1 + 1)² + (6 + 2)²) = √(0 + 64) = 8.
Тогда радиус равен:
R = AB/2 = 4
Координаты центра найдем как координаты середины отрезка АВ:
x₀ = (x₁ + x₂)/2, y₀ = (y₁ + y₂)/2
x₀ = (- 1 - 1)/2 = - 1, y₀ = (6 - 2)/2 = 2
О(- 1; 2)
Уравнение окружности:
(x - x₀)² + (y - y₀)² = R²
(x + 1)² + (y - 2)² = 16
Уравнение прямой, проходящей через центр окружности и параллельной оси Ох:
у = 2.
Уравнение прямой, проходящей через центр окружности и параллельной оси Оу:
х = - 1.
Объяснение:
Во вызвавший трудности
Начертите треугольник АВС Постройте образ треугольника АВС: 1) при параллельном переносе на вектор ВС; 2) при симметрии относительно точки А; 3) при симметрии относительно прямой АВ.
ответ подготовленный экспертами Учись.Ru
Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "ЕГЭ (школьный)". Ваш во звучал следующим образом: Начертите треугольник АВС Постройте образ треугольника АВС: 1) при параллельном переносе на вектор ВС; 2) при симметрии относительно точки А; 3) при симметрии относительно прямой АВ.
После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами во будет звучать следующим образом: