Впараллелограмме abcd биссектриса угла a пересекает сторону bc в точке e. длина стороны ad равна 8. средняя линия трапеции aecd равна 6. найдите периметр параллелограмма
Рассмотрим ΔАВЕ. ∠ВАЕ=∠ЕАД по свойству биссектрисы; ∠АЕВ=∠ЕАД как внутренние накрест лежащие при ВС║АД и секущей АЕ; тогда и ∠ВАЕ=∠АЕВ, а ΔАВЕ - равнобедренный. АВ=ВЕ=4.
Дано: АВСД - параллелограмм, АЕ - биссектриса, АД=8, МР - средняя линия трапеции АЕСД, АЕ=6. Найти Р(АВСД).
Решение: рассмотрим трапецию АЕСД. МР=1\2 (АД+СЕ); 6=1\2 (8+СЕ);
СЕ=12-8=4;
ВЕ=ВС-СЕ=8-4=4
Рассмотрим ΔАВЕ. ∠ВАЕ=∠ЕАД по свойству биссектрисы; ∠АЕВ=∠ЕАД как внутренние накрест лежащие при ВС║АД и секущей АЕ; тогда и ∠ВАЕ=∠АЕВ, а ΔАВЕ - равнобедренный. АВ=ВЕ=4.
Находим периметр: Р=АВ+ВС+СД+АД=4+8+4+8=24 (ед.изм).
ответ: 24.