Классная задача Пусть дан прямоугольный треугольник АСВ, ∠С=90°, по свойству отрезков касательных, проведенных из одной точки к одной окружности. расстояние от этих точек до точек касания одинаковы, если К, Т и Р обозначить точки касания соответственно к гипотенузе АВ, катетем СВ и АС соответственно, то по этому свойству, если обозначить ВТ=х, то и ВК=х, тогда
АК=АВ-ВК=5-х, но тогда и АР=5-х, СТ=СР=1, сложим отрезки, из которых состоят катеты и гипотенуза. АВ=х+5-х=5, СВ=х+1; АС=5-х+1=6-х.
Классная задача Пусть дан прямоугольный треугольник АСВ, ∠С=90°, по свойству отрезков касательных, проведенных из одной точки к одной окружности. расстояние от этих точек до точек касания одинаковы, если К, Т и Р обозначить точки касания соответственно к гипотенузе АВ, катетем СВ и АС соответственно, то по этому свойству, если обозначить ВТ=х, то и ВК=х, тогда
АК=АВ-ВК=5-х, но тогда и АР=5-х, СТ=СР=1, сложим отрезки, из которых состоят катеты и гипотенуза. АВ=х+5-х=5, СВ=х+1; АС=5-х+1=6-х.
Периметр Р=АВ +СВ+АС=5+(1+х)+(6-х)=12/см/
ответ 12 см
12 см.
Объяснение:
Дано: ΔАВС - прямокутний, ∠С=90°, АВ=5 см, ОЕ-радіус, ОЕ=1 см. Знайти Р(АВС).
Нехай коло торкається гіпотенузи у точці К, катета АС у точці Е, катета ВС у точці М.
Відрізки дотичних, проведених з однієї точки до кола, рівні між собою.
Нехай АК=х см, тоді ВК-5-х см; але АЕ=АК, отже, АЕ=х см.
ВМ=ВК=5-х см.
Дотична до кола перпендикулярна до радіуса, проведеного у точку дотику. Тому СЕ⊥ЕО, ОМ⊥СМ, ЕС⊥СМ, ЕО=ОМ як радіуси, отже ОЕСМ - квадрат, ЕС=СМ=1 см.
АС=х+1 см.
Знайдемо периметр АВС:
Р=АВ+АС+ВС=5+(х+1)+(1+5-х)=5+х+1+1+5-х=12 см.