Ну вообще-то по определению фигуры равны , если они совпадают при наложении. Если треугольники равны, то и все их соответствующие элементы при наложении совпадают. Но раз уж от Вас требуют еще какого-то доказательства, то можно и так: Пусть есть тр-ки АВС и А1 В1 С1 равны. Покажем, например, что биссектриса АН = биссектрисе А1 Н1. Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам). Так же и про остальные биссектрисы.
Но раз уж от Вас требуют еще какого-то доказательства, то можно и так:
Пусть есть тр-ки АВС и А1 В1 С1 равны.
Покажем, например, что биссектриса АН = биссектрисе А1 Н1.
Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам).
Так же и про остальные биссектрисы.
х^2+2х-3 = х - 1
х^2+х-2 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=1^2-4*1*(-2)=1-4*(-2)=1-(-4*2)=1-(-8)=1+8=9;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√9-1)/(2*1)=(3-1)/2=2/2=1;
x_2=(-√9-1)/(2*1)=(-3-1)/2=-4/2=-2.
По заданию принимаем отрицательное значение х = -2.
Уравнение касательной:
Для у = х² + 2х - 3 находим:
f(xo) = 4 - 4- 3 = -3
f'(xo), сначала находим f'(x) = 2х + 2, f'(xo) = 2*(-2) + 2 = -2.
Укас = -3 + (-2)(х - (-2)) = -3 - 2х - 4 = -2х - 7.
ответ: Укас = -2х - 7.