Впараллелограмме abcp ap=8 см, угол а=30°. через прямую ав проведена плоскость бетта, перпендикулярная плоскости параллелограмма. найдите расстояние между прямой ср и прямой, что скрещивается с ней и лежит в плоскости бетта. решите, и желательно с чертежом, !
ответ: Б.) 52/4=13 см сторона ромба10:2=5 см половина диагонали ромба13*13=169 квадрат стороны 5*5=25 квадрат половины диагонали169-25=144 квадрат половины другой диагоналиКорень из 144 равен 12 см - половина второй диагонали12*2=24 см вторая диагональ
А.) А) треугольник АОВ прямоугольный, и АО = одна вторая АС, ВО = одна вторая ВD. Значит АО = 3дм а ВО = 4дм. По теореме Пифагора АВ = корень квадратный из 3 во второй степени + 4 во второй степени = корень квадратный из 9 + 16 = корень квадратный из 2
(вектор)АВ*(вектор)АС = (вектор)СА*(вектор)СВ = 20*24*cos(BAC) =
= 20*24*6/10 = 12*24 = 288
по т.косинусов: cos(BAC) = 24² / (2*20*24) = 0.6
(вектор)ВА*(вектор)ВС = 20*20*cos(AВC) = 20*20*28/100 = 4*28 = 112
по т.косинусов: cos(AВC) = 1 - (24² / (2*20²)) = 1 - 0.72 = 0.28
S(ABC) = √(32*12*12*8) = 12*8*2 --формула Герона
S(ABC) = AB*BC*AC / (4*R)
R = 20*20*24 / (4*12*8*2) = 25/2 = 12.5
длина описанной окружности C = 2*pi*R = 25*pi
S(ABC) = 32*r
r = 6
Sкруга = pi*r² = 36*pi