Впарке аттракционов была построена «» башня. значение синуса угла наклона «» башни относительно земли равно 0,5, высота башни равна 40 м. сколько метров пролетит до земли камень, брошенный вертикально вниз с верхней площадки башни?
Совершим параллельный перенос точки A вдоль прямой AB к середине AB. Обозначим ее как N. Поскольку AB || CD, а CD⊂(SCD), расстояние от A до (SCD) равно расстоянию от точки N до плоскости (SCD). На грани SCD проведем апофему (высоту из S). Она пересечет CD в точке M. Точка M является серединой CD, так как пирамида правильная (из этого следует, что SCD равнобедренный). NM || AD. Соответственно, в полученном треугольнике SNM высота из N на сторону SM будет являться перпендикуляром из N на плоскость (SCD), то есть длина высоты в треугольнике SNM из вершины N является искомым расстоянием. Рассмотрим треугольник SNM. Это равнобедренный треугольник, где SN = SM. Пусть O - проекция вершины пирамиды на плоскость основания пирамиды. Так как пирамида правильная, O является серединой NM, а SO - высотой треугольника SNM из вершины S. По условию, SO = 4 см, AD = 6 см. Так как AD = NM = 2OM, то OM = 6 см / 2 = 3 см. Из прямоугольного треугольника SOM находим SM: SM = √(SO²+OM²) = 5 см. Пусть искомое расстояние равно h. Площадь треугольника SNM найдем двумя 1) S = 1/2 * SO * NM 2) S = 1/2 * h * SM Приравняем их и выразим h: h = SO * NM / SM = 4 см * 6 см / 5 см = 4.8 см.
Вроде придумал решение. Пусть число соединить n точек на окружности равно F(n). Пронумеруем точки на окружности от 0 до n-1. Возьмем точку n-1. Рассмотрим два непересекающихся случая: 1) Она не имеет у себя пары. Тогда число это устроить равно F(n-1) 2) Она имеет себе пару. Теперь происходит выбор кандидатов. Пусть ее пара точка 0. Тогда число это устроить равно F(количество точек между 0 и n-1 в одном направлении) * F(количество точек между 0 и n-1 в другом направлении) = F(0)*F(n-2). То есть мы этим отрезком разбиваем все множество точек на две половины, считаем ответ на каждой половине, а потом по правилу произведения их умножаем. Дальше ее парой может быть точка 1. Поступаем аналогично, здесь будет F(1)*F(n-3), так как в одном направлении лишь точка 0, в другом направлении точки 2,3,..,n-2. Аналогично рассуждаем и доходим до F(n-2)*F(0). Суммируем получившиеся и получаем: F(n) = F(n-1) + F(0)*F(n-2)+F(1)*F(n-3)+..+F(n-3)*F(1)+F(n-2)*F(0). Начальные значения: F(0) = F(1) = 1, F(2) = 2 (мы можем соединять или не соединять две точки) По этим данным можно находить F(3), F(4) и т. д. Для F(3) = F(2) + F(0)*F(1) + F(1)*F(0) = 2 + 1 + 1 = 4. Перечислим эти 1) ничего не связано 2) связаны только 0, 1 3) связаны только 0, 2 4) связаны только 1, 2
Рассмотрим треугольник SNM. Это равнобедренный треугольник, где SN = SM. Пусть O - проекция вершины пирамиды на плоскость основания пирамиды. Так как пирамида правильная, O является серединой NM, а SO - высотой треугольника SNM из вершины S. По условию, SO = 4 см, AD = 6 см. Так как AD = NM = 2OM, то OM = 6 см / 2 = 3 см. Из прямоугольного треугольника SOM находим SM: SM = √(SO²+OM²) = 5 см.
Пусть искомое расстояние равно h. Площадь треугольника SNM найдем двумя
1) S = 1/2 * SO * NM
2) S = 1/2 * h * SM
Приравняем их и выразим h:
h = SO * NM / SM = 4 см * 6 см / 5 см = 4.8 см.
Рассмотрим два непересекающихся случая:
1) Она не имеет у себя пары. Тогда число это устроить равно F(n-1)
2) Она имеет себе пару. Теперь происходит выбор кандидатов.
Пусть ее пара точка 0. Тогда число это устроить равно F(количество точек между 0 и n-1 в одном направлении) * F(количество точек между 0 и n-1 в другом направлении) = F(0)*F(n-2). То есть мы этим отрезком разбиваем все множество точек на две половины, считаем ответ на каждой половине, а потом по правилу произведения их умножаем.
Дальше ее парой может быть точка 1. Поступаем аналогично, здесь будет F(1)*F(n-3), так как в одном направлении лишь точка 0, в другом направлении точки 2,3,..,n-2.
Аналогично рассуждаем и доходим до F(n-2)*F(0).
Суммируем получившиеся и получаем:
F(n) = F(n-1) + F(0)*F(n-2)+F(1)*F(n-3)+..+F(n-3)*F(1)+F(n-2)*F(0).
Начальные значения:
F(0) = F(1) = 1,
F(2) = 2 (мы можем соединять или не соединять две точки)
По этим данным можно находить F(3), F(4) и т. д.
Для F(3) = F(2) + F(0)*F(1) + F(1)*F(0) = 2 + 1 + 1 = 4.
Перечислим эти
1) ничего не связано
2) связаны только 0, 1
3) связаны только 0, 2
4) связаны только 1, 2