Есть теорема которая гласит, что через две пересекающиеся прямые проходит одна и только одна плоскость. Пусть эти прямые будут a & b. Так как по условию b пересекает c, то они имеют одну общую точку, которая лежит на b, и следовательно эта точка лежит в плоскости. Так как c пересекает a, то они тоже имеют одну общую точку, которая лежит на a, и следовательно это точка лежит в той же плоскости. Далее есть такое утверждение, что если две точки прямой лежат в плоскости, то и вся прямая лежит в этой же плоскости. Так как две точки прямой c лежат в плоскости в которой лежат a & b то и c принадлежит той же плоскости
точку пересечения отрезков обозначим за О.
1)Рассмотрим треугольники ВОС и AOD, они равны, т.к. ВО=OD, ОА=ОС, а угол ВОС=углу AOD, как вертикальные при пересекающихся прямых.
Из этого следует, что ВС=AD, как соответственные элементы равных треугольников.
2)Рассмотрим треугольники ВОА и COD, они равны, т.к. ВО=OD, АО=ОС, а угол ВОА=углуCOD, как вертикальные при пересекающихся прямых.
Из этого следует, что АВ=CD
3)Рассмотрим треугольники АВС и ADC, они равныпо трем сторонам ( АС-общая, AB=CD, AD=BC из доказательств)