Впишите правильный ответ.
Четырёхугольник ABCD задан координатами своих вершин A (2; 5), B (–3; 7), C (–6; 2), D (–1; –1). Выполните построения и укажите координаты вершин четырёхугольника A1B1C1D1, полученного путём параллельного переноса на вектор a{3,-2} из четырёхугольника ABCD.
ответ: А1 ( ; ), В1 ( ; ), С1 ( ; ), D1 ( ; )-?
Секущая плоскость параллельна плоскости основания, то согласно теореме о пересечении двух параллельных плоскостей третьей плоскостью, имеем, что она будет пересекать боковые грани по прямым, параллельным рёбрам основания. Рёбра DB и DC пересечёт по их серединам. Искомое сечение треугольник, рёбра которого средние линии боковых граней и равны 0,5а. (Средняя линия соединяет середины двух сторон треугольника, параллельна третьей стороне и равна её половине). Площадь правильного треугольника равна половине произведения его сторон на синус угла между ними. В правильном треугольнике все углы по 60град.
S=0,5·0,5а·0.5а·Sin60 (0,5=1/2, Sin60= √3/2)
S=1/16·а²·√3
Секущая плоскость параллельна плоскости основания, то согласно теореме о пересечении двух параллельных плоскостей третьей плоскостью, имеем, что она будет пересекать боковые грани по прямым, параллельным рёбрам основания. Рёбра DB и DC пересечёт по их серединам. Искомое сечение треугольник, рёбра которого средние линии боковых граней и равны 0,5а. (Средняя линия соединяет середины двух сторон треугольника, параллельна третьей стороне и равна её половине). Площадь правильного треугольника равна половине произведения его сторон на синус угла между ними. В правильном треугольнике все углы по 60град.
S=0,5·0,5а·0.5а·Sin60 (0,5=1/2, Sin60= √3/2)
S=1/16·а²·√3