Вправильной треугольной призме abca1b1c1 точки p и t - середины рёбер a1b1 и b1c1 соответственно. вычислите периметр основания пирамиды ba1ptc1, если известно, что pt=4 см
формулировка этой гипотезы выглядит так: «на любом невырожденном проективном комплексном многообразии любой класс ходжа представляет собой рациональную линейную комбинацию классов циклов». нужно доказать или опровергнуть это утверждение. о чем речь? решения уравнения у = зх + 1 можно представить на координатной сетке как прямую. корни квадратного уравнения дадут нам параболу. усложнять можно бесконечно — например, поверхности с таким уравнением
навье стокса-описывают, как потоки жидкости или газа ведут себя при определенных условиях. их применяют в метеорологии, в конструировании самолетов, при расчете аэродинамики автомобилей. однако в аналитическом виде решения этих уравнений найдены лишь в некоторых частных случаях. часть уравнений навье-стокса для несжимаемой жидкости « тысячелетия» не требует найти явные решения уравнения. вопрос такой: если известно состояние жидкости в определенный момент времени и характеристики ее движения — существует ли решение, которое будет верно для всего будущего времени? чтобы получить премию, достаточно доказать или опровергнуть существование и гладкость решения в любом из двух вариантов, предложенных институтом клэя.
ответ:Рисунок 1.47
Угол В вписанный,равен 90 градусов,опирается на дугу 180 градусов
Угол К вписанный,опирается на дугу
180+40=220 градусов и равен половине ее градусной меры
<В=110 градусов
Рисунок 1.48
Угол В вписанный,опирается на дугу
360-(120+80)=160 градусов
<АВD опирается на дугу
160:2=80 градусов
На эту же дугу опирается центральный угол АОD и равен ее градусной мере
<АОD=80 градусов
Рисунок 1.49
Радиус и касательная образуют угол 90 градусов.
Дуга ВСА равна 180 градусов,т к диаметр делит окружность пополам
360:2=280 градусов
Угол АВС вписанный и опирается на дугу в два раза больше его градусной меры
59•2=118 градусов
Угол ВАС опирается на дугу
180-118=62 градуса
он вписанный и равен половине градусной меры дуги
62:2=31 градус
Рисунок 1.50
<Р вписанный и равен половине дуги,на которую он опирается
Дуга равна
АЕ=55•2=110 градусов
< К=(110-40):2=35 градусов
Рисунок 1.51
<D вписанный,равен половине дуги,на которую он опирается
Дуга равна
50•2=100 градусов
Дуга FDG=360-100=260
<TFG=260:2=130 градусов
Объяснение:
формулировка этой гипотезы выглядит так: «на любом невырожденном проективном комплексном многообразии любой класс ходжа представляет собой рациональную линейную комбинацию классов циклов». нужно доказать или опровергнуть это утверждение. о чем речь? решения уравнения у = зх + 1 можно представить на координатной сетке как прямую. корни квадратного уравнения дадут нам параболу. усложнять можно бесконечно — например, поверхности с таким уравнением
навье стокса-описывают, как потоки жидкости или газа ведут себя при определенных условиях. их применяют в метеорологии, в конструировании самолетов, при расчете аэродинамики автомобилей. однако в аналитическом виде решения этих уравнений найдены лишь в некоторых частных случаях. часть уравнений навье-стокса для несжимаемой жидкости « тысячелетия» не требует найти явные решения уравнения. вопрос такой: если известно состояние жидкости в определенный момент времени и характеристики ее движения — существует ли решение, которое будет верно для всего будущего времени? чтобы получить премию, достаточно доказать или опровергнуть существование и гладкость решения в любом из двух вариантов, предложенных институтом клэя.