Параллельные линии имеют одинаковые коэффициенты перед иксом, поэтому запишем в общем случае уравнение такой касательной:
Суть касательных в том, что бы они имели 1 общую точку с графиком. Такие точки в нашем случае можно найти, если уравнение эллипса и уравнение касательной решить в системе, и при этом потребовать, что бы система имела ровно одно решение.
Подставим в первом уравнении вместо игрека второе уравнение, и теперь будем рассматривать отдельно только первое уравнение.
Здесь b идёт в качестве параметра. Для каждого решения этого уравнения (игрека) по второму уравнению можно найти икс (хотя здесь этого делать не нужно). Отсюда важный вывод - система имеет столько же решений, сколько это уравнение.
Найдём те значения параметра, при которых это уравнение будет иметь ровно одно решение.
решила те, которые знаю
прости солнышко, что не все
я решала задачи слева направо, с верхнего левого угла
1) сумма углов А и В = 90°
следовательно:
3х = 90
х = 30°
угол А = 2*30° = 60°
угол В = 30°
2) не смогла
3) угол В : угол А = 2 : 3
2х + 3х = 90°(сумма углов А и В)
5х = 90
х = 18°
угол В = 18*2 = 36°
угол А = 18*3 = 54°
4) угол АВС = 60°(т.к. угол АВС и угол в 120° – смежные углы, которые в сумме составляют 180°)
СВ - катет, который лежит напротив угла в 30° => он равен половине гипотенузы
следовательно:
СВ = а (а)
АВ = 2а (с)
по условию: а + с = 26,4 => 3а = 26,4
26,4 : 3 = 8,8
а = 8,8
с = 8,8 * 2 = 17,6
5) ВН = АВ/2 = 6
ВН = НС = 6
6) СВ = 2 * НВ
АВ = 2 * СВ = 8
7) 8) 9) не смогла
будут вопросы - пиши :)
Выразим у в уравнении прямой:
Параллельные линии имеют одинаковые коэффициенты перед иксом, поэтому запишем в общем случае уравнение такой касательной:
Суть касательных в том, что бы они имели 1 общую точку с графиком. Такие точки в нашем случае можно найти, если уравнение эллипса и уравнение касательной решить в системе, и при этом потребовать, что бы система имела ровно одно решение.
Подставим в первом уравнении вместо игрека второе уравнение, и теперь будем рассматривать отдельно только первое уравнение.
Здесь b идёт в качестве параметра. Для каждого решения этого уравнения (игрека) по второму уравнению можно найти икс (хотя здесь этого делать не нужно). Отсюда важный вывод - система имеет столько же решений, сколько это уравнение.
Найдём те значения параметра, при которых это уравнение будет иметь ровно одно решение.