В прямоугольном треугольнике abc гипотенуза ab=5 тангенсом угла =3. найти площадь треугольника? Зная tga=3 легко найти cosa и sina cosa=1/корень(1+tg^2a)=1/корень(1+9)=1/корень(10) sina=корень(1-cos^2a)=корень(1-1/10)=корень(9/10)=3/корен(10) Соседний катет AC равен IACI=IABI*cosa=5*1/корень(10)=корень(10)/2 Площадь треугольника равна S=(1/2)*IABI*IACI*sina = (1/2)*5*(корень(10)/2)*3/корень(10)=15/4= 3,75
Второй вариант Обозначим прямоугольный треугольник как АВС где угол С-прямой АС=5-гипотенуза ВС и АВ -катеты tga = ВС/AC =3 или ВС =3АС Пусть АС =х Тогда ВС=3х По теореме Пифагора АС^2+BC^2=AB^2 x^2+9x^2=25 10x^2=25 x=корень(2,5) Поэтому катеты равны AC=корень(2,5) ВС=3корень(2,5) Площадь треугольника равна S=(1/2)AC*BC=(1/2)*корень(2,5)*3корень(2,5)=3*2,5/2=7,5/2=3,75
найти площадь треугольника?
Зная tga=3 легко найти cosa и sina
cosa=1/корень(1+tg^2a)=1/корень(1+9)=1/корень(10)
sina=корень(1-cos^2a)=корень(1-1/10)=корень(9/10)=3/корен(10)
Соседний катет AC равен
IACI=IABI*cosa=5*1/корень(10)=корень(10)/2
Площадь треугольника равна
S=(1/2)*IABI*IACI*sina = (1/2)*5*(корень(10)/2)*3/корень(10)=15/4= 3,75
Второй вариант
Обозначим прямоугольный треугольник как АВС где угол С-прямой
АС=5-гипотенуза ВС и АВ -катеты
tga = ВС/AC =3 или ВС =3АС
Пусть АС =х
Тогда ВС=3х
По теореме Пифагора
АС^2+BC^2=AB^2
x^2+9x^2=25
10x^2=25
x=корень(2,5)
Поэтому катеты равны
AC=корень(2,5)
ВС=3корень(2,5)
Площадь треугольника равна
S=(1/2)AC*BC=(1/2)*корень(2,5)*3корень(2,5)=3*2,5/2=7,5/2=3,75