Впрямоугольном треугольнике abc уголc равен 30, угол а= 30 градусам . длина медианы cm, проведённой к гипотенузе ab, равна 12. найдите длину катета cb объясните
1)Продолжим медиану CМ за точку М до точки D так, чтобы было выполнено равенство CМ = МD, и соединим полученную точку D с точками A и B .
Получим четырехугольник ADBC, диагонали которого в точке пересечения делятся пополам. В силу признака параллелограмма получаем, что четырехугольник ADBC является параллелограммом, а поскольку полученный параллелограмм содержит прямой угол C, то и все его углы прямые, следовательно, четырехугольник ADBC – прямоугольник. Поскольку диагонали прямоугольника равны, получаем равенства:
ДС=АВ, 2СМ=АВ, СМ=1/2*АВ, АВ=24
2)ΔАВС-прямоугольный. По свойству катета ,лежащего против угла 30 градусов : СВ=1/2*АВ, СВ=12
СВ=12
Объяснение:
1)Продолжим медиану CМ за точку М до точки D так, чтобы было выполнено равенство CМ = МD, и соединим полученную точку D с точками A и B .
Получим четырехугольник ADBC, диагонали которого в точке пересечения делятся пополам. В силу признака параллелограмма получаем, что четырехугольник ADBC является параллелограммом, а поскольку полученный параллелограмм содержит прямой угол C, то и все его углы прямые, следовательно, четырехугольник ADBC – прямоугольник. Поскольку диагонали прямоугольника равны, получаем равенства:
ДС=АВ, 2СМ=АВ, СМ=1/2*АВ, АВ=24
2)ΔАВС-прямоугольный. По свойству катета ,лежащего против угла 30 градусов : СВ=1/2*АВ, СВ=12