Впрямоугольном треугольнике авс, угол в - прямой. из угла в проведена высота вд к стороне ас. известно, что ад - дс = вс. найти все углы треугольника авс
На стороне АС отметим точку К симметричную точке С относительно Высоты ВД Тогда по условию АК = АД - ДС = ВС Отрезок ВК = ВС так как К симметрично С Рассмотрим треугольник АКВ. Он равнобедренный так как АК = КВ Тогда угол КАВ = углу КВА Угол ВКД внешний угол треугольника АКВ Тогда угол ВКД = угол КАВ + угол КВА = 2* угол КАВ (так как углы при основании равнобедренного треугольника равны) Угол ВКД = угол ВСД как углы при основании равнобедренного треугольника. Тогда угол ВСД = 2* угол КАВ угол ВСД + угол КАВ = 90 тогда 2* угол КАВ + угол КАВ = 90 тогда 3* угол КАВ = 90 тогда угол КАВ = 30 а угол ВСД = 60 ответ 30 и 60
Тогда по условию АК = АД - ДС = ВС
Отрезок ВК = ВС так как К симметрично С
Рассмотрим треугольник АКВ. Он равнобедренный так как АК = КВ
Тогда угол КАВ = углу КВА
Угол ВКД внешний угол треугольника АКВ Тогда угол ВКД = угол КАВ + угол КВА = 2* угол КАВ (так как углы при основании равнобедренного треугольника равны)
Угол ВКД = угол ВСД как углы при основании равнобедренного треугольника.
Тогда угол ВСД = 2* угол КАВ
угол ВСД + угол КАВ = 90 тогда
2* угол КАВ + угол КАВ = 90 тогда
3* угол КАВ = 90 тогда
угол КАВ = 30 а угол ВСД = 60
ответ 30 и 60