Вравнобедренном прямоугольном треугольнике с катетами, равными 8 корень квадратный из 2 см, вычислите высоту, опущенную из вершины прямого угла, с объяснениями.
для начала найдем гипотенузу(с) треугольника по т. Пифагора с²=a²+b²
та как a=b, то формула будет выглядеть так: с²=2a²
c²=2*(8√2)²
c²=2*(64*2)
c²=2*128
c²=256
c=√256
c=16 см
теперь проведем высоту из прямого угла на гипотенузу. так как тр. равнобедренный, то высота будет и медианой.
рассм. полученный прямоугольный треугольник. высота(h) является катетом, а сторона трегольника гипотенузой. по т. Пифагора h²=c²-b². так как высота является медианой то сторона b вудет равна 1/2 гипотенузы большего треугольника.
h²=8√2²-8²
h²=128-64
h²=64
h=√64=8 см
высота опущенная из прямого угла равна 8 см
можно решить еще проще. существует формула для нахождения высоты из прямого угла. нужно лишь подставить данные:
для начала найдем гипотенузу(с) треугольника по т. Пифагора с²=a²+b²
та как a=b, то формула будет выглядеть так: с²=2a²
c²=2*(8√2)²
c²=2*(64*2)
c²=2*128
c²=256
c=√256
c=16 см
теперь проведем высоту из прямого угла на гипотенузу. так как тр. равнобедренный, то высота будет и медианой.
рассм. полученный прямоугольный треугольник. высота(h) является катетом, а сторона трегольника гипотенузой. по т. Пифагора h²=c²-b². так как высота является медианой то сторона b вудет равна 1/2 гипотенузы большего треугольника.
h²=8√2²-8²
h²=128-64
h²=64
h=√64=8 см
высота опущенная из прямого угла равна 8 см
можно решить еще проще. существует формула для нахождения высоты из прямого угла. нужно лишь подставить данные:
h=(a*b)/(√a²+b²)
h=(8√2*8√2)/(√(8√2)²+(8√2)²)
h=128/(√256)
h=128/16
h=8 см