В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
radovdima
radovdima
06.10.2021 10:56 •  Геометрия

Вравнобедренном треугольнике abc с основанием ac боковая сторона равна 60. если центр вписанной окружности делит высоту bd в отношении 12: 5, то основание треугольника равно

Показать ответ
Ответ:
enderrock84
enderrock84
15.07.2020 23:26
Условие означает, что половина основания относится к боковой стороне, как 5/12; то есть основание относится к боковой стороне, как 5/6, и равно 50.

на самом деле, эта устная задачка имеет полезное обобщение.
Если есть треугольник со сторонами a b c, то биссектриса к стороне c делит её в отношении a/b, то есть - на отрезки ca/(a + b) и cb/(a + b); 
Поэтому биссектриса к стороне b делит биссектрису к стороне c на отрезки в отношении (считая от вершины C) a/(ca/(a + b)) = (a + b)/c;
То есть центр вписанной окружности делит биссектрису в отношении (a + b)/c, где с - сторона, к которой биссектриса проведена. 
В этой задаче c - основание, BD - биссектриса, и (60 + 60)/c = 12/5; с = 50;
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота