Вравнобокой трапеции один из углов равен 60 градусов, диагональ трапеции образует с основанием угол 30 градусов. найдите нижнее основание трапеции и боковую сторону, если верхнее основание = 5см от этого зависит годовая оценка
Рассмотрим треугольник ВСН, он прямоугольный , по теореме Пифагора ВС²=НС²+ВН² 4²=1²+ВН² 16=1+ВН² ВН²=15 ВН=√15
Катет, лежащий против острого угла в 30°, в точности равен половине гипотенузы. значит гипотенуза = 2*катета который лежит против 30° гипотинуза прямоугольного треугольника АВН=2*катет ВН АВ=2√15
смотрим треугольник АВН, он прямоугольный, по теореме Пифагора прямоугольного треугольника АВ²=ВН²+АН² (2√15)²=√15²+АН² 60=15+АН² АН²=45 АН=√45
только так в голову приходит, но, возможно, если ещё подумать то будет решение без корня (если такой нельзя)
Теорема 1. Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны. 2. Если две параллельные прямые пересечены секущей, то соответственные углы равны. 3. Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°. Доказательство 1. Пусть параллельные прямые a и b пересечены секущей MN (c). Докажем что накрест лежащие углы 3 и 6 равны. Допустим, что углы 3 и 6 не равны. Отложим от луча MN угол PMN, равный углу 6, так, чтобы угол PMN и угол 6 были накрест лежащими углами при пересечении прямых МР и b секущей MN. По построению эти накрест лежащие углы равны, поэтому МР||b. Мы выяснили, что через точку М проходят две прямые (прямые a и МР) , параллельные прямой b. Но это противоречит аксиоме параллельных прямых. Значит, наше допущение неверно и угол 3 равен углу 6.
4²=1²+ВН²
16=1+ВН²
ВН²=15
ВН=√15
Катет, лежащий против острого угла в 30°, в точности равен половине гипотенузы.
значит гипотенуза = 2*катета который лежит против 30°
гипотинуза прямоугольного треугольника АВН=2*катет ВН
АВ=2√15
смотрим треугольник АВН, он прямоугольный, по теореме Пифагора прямоугольного треугольника
АВ²=ВН²+АН²
(2√15)²=√15²+АН²
60=15+АН²
АН²=45
АН=√45
только так в голову приходит, но, возможно, если ещё подумать то будет решение без корня (если такой нельзя)
1. Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.
2. Если две параллельные прямые пересечены секущей, то соответственные углы равны.
3. Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.
Доказательство
1. Пусть параллельные прямые a и b пересечены секущей MN (c). Докажем что накрест лежащие углы 3 и 6 равны. Допустим, что углы 3 и 6 не равны. Отложим от луча MN угол PMN, равный углу 6, так, чтобы угол PMN и угол 6 были накрест лежащими углами при пересечении прямых МР и b секущей MN. По построению эти накрест лежащие углы равны, поэтому МР||b. Мы выяснили, что через точку М проходят две прямые (прямые a и МР) , параллельные прямой b. Но это противоречит аксиоме параллельных прямых. Значит, наше допущение неверно и угол 3 равен углу 6.