Высота треугольника это перпендикуляр, опущенный из любой вершины треугольника на противоположную сторону. Обозначим высоту BD. высота делит первоначальный тругольник на два прямоугольных треугольника с гипотенузами AB и ВС соответственно. Сумма углов треугольника = 180 град. Треугольник BDA: известные углы: 18 град и 90 град. Неизвестный угол DAB = 180 - 90 - 18 = 72 градуса
Треугольник BDC: известные углы: 46 град и 90 град. Неизвестный угол DCB = 180 - 90 - 46 = 44 градуса
Угол ABC из которого опущена высота = 46+18 = 64 градуса
Пусть у нас трапеция АВСД, АВ = СД, АС - биссектриса угла А, угол АСД - прямой. Если биссектриса острого угла трапеции является его диагональю, то меньшее основание трапеции равно её боковой стороне. Имеем АВ = ВС =СД = а. Опустим перпендикуляр СЕ из точки С на АД. При этом получили 2 подобных треугольника: АСЕ и ЕСД. Угол САЕ равен углу ДСЕ как взаимно перпендикулярные. Угол А равен углу Д (как углы при основании равнобедренной трапеции). Поэтому угол ДСЕ равен половине угла Д. Имеем: 90° =(1/2)Д+Д = (3/2)Д, Отсюда угол Д = 90*2/3 = 180/3 = 60°. Тогда ЕД = а/2, а основание АД = а+2(а/2) = 2а. Высота СЕ = а*sin 60° = a√3/2. Площадь S трапеции равна: S = ((a+2a)/2)*(a√3/2) = (3a/2)*(a√3/2) = 3√3a²/4. То есть данная трапеция равна площади трёх равносторонних треугольников со стороной а.
Сумма углов треугольника = 180 град.
Треугольник BDA:
известные углы: 18 град и 90 град. Неизвестный угол DAB = 180 - 90 - 18 = 72 градуса
Треугольник BDC:
известные углы: 46 град и 90 град. Неизвестный угол DCB = 180 - 90 - 46 = 44 градуса
Угол ABC из которого опущена высота = 46+18 = 64 градуса
72+44+64 = 180 градусов
Если биссектриса острого угла трапеции является его диагональю, то меньшее основание трапеции равно её боковой стороне.
Имеем АВ = ВС =СД = а.
Опустим перпендикуляр СЕ из точки С на АД.
При этом получили 2 подобных треугольника: АСЕ и ЕСД.
Угол САЕ равен углу ДСЕ как взаимно перпендикулярные.
Угол А равен углу Д (как углы при основании равнобедренной трапеции).
Поэтому угол ДСЕ равен половине угла Д.
Имеем: 90° =(1/2)Д+Д = (3/2)Д,
Отсюда угол Д = 90*2/3 = 180/3 = 60°.
Тогда ЕД = а/2, а основание АД = а+2(а/2) = 2а.
Высота СЕ = а*sin 60° = a√3/2.
Площадь S трапеции равна:
S = ((a+2a)/2)*(a√3/2) = (3a/2)*(a√3/2) = 3√3a²/4.
То есть данная трапеция равна площади трёх равносторонних треугольников со стороной а.