Все 25 , решите 1. дан диаметр 20√2, катеты равны ac=bc с центром в точке о d= 20√2 cм, ac=bc найти sштрих фигуры 2. вычислить длину дуги если r= 20 см ; d =150° также найти s сегмента
А) Если точки А, К, Е и В лежат на одной окружности, то четырёхугольник АКЕВ - вписанный. В нём ∠А+∠Е=∠К+∠В. СН⊥АВ, значит тр-ки АВС, АСН и СВН подобны. В тр-ке АСН НК⊥ АС, значит тр-ки АСН и НСК подобны. КСЕН - прямоугольник, значит тр-ки НСК и КЕН равны. Обозначим равные углы на рисунке. Сразу видно, что в четырёхугольнике АКЕВ ∠А+∠Е=∠К+∠В, значит он вписан в окружность. Доказано.
Б) Пусть АН=х, ВН=АВ-х=12-х. СН²=АН·ВН, 25=х(12-х), -х²+12х-25=0, х₁=6-√11, х₂=6+√11. АН=6-√11, ВН=6+√11. В тр-ке АСН АС²=СН²+АН²=25+(6-√11)²≈32.2, АС≈5.7. НК=АН·СН/АС=(6-√11)·5/5.7≈2.4, СЕ=НК, В тр-ке АСЕ АЕ=√(АС²+СЕ²)=√(32.2+2.4²)≈6.14, В тр-ке АВС sinB=АС/АВ=5.7/12≈0.47, В тр-ке ВАЕ АЕ/sinB=2R ⇒ R=АЕ/2sinB=6.14/(2·0.47)=6.5 - это ответ. На самом деле, радиус окружности, описанной вокруг любого из треугольников, образованных из вершин четырёхугольника АКЕВ, равен радиусу описанной окружности вокруг самого четырёхугольника.
Стороны треугольника относятся как 5:3:7.
Найдите стороны подобного ему треугольника, у которого:
а) периметр= 45 см;
б)меньшая сторона= 5 см;
в) большая сторона= 7 см;
г) разность большей и меньшей сторон составляет 2 см.
а) В периметре данного треугольника 5+3+7=15 равных частей.
45:15=3 см - длина, которая приходится на 1 часть. Соответственно стороны равны:
1) 3•5=15 см
2) 3•3=9 см
3) 3•7=21 см
б) Если меньшая сторона равна 5 см, то она содержит 3 части, и длина одной части равна:
5:3=5/3 см (одна часть)
Тогда вторая сторона равна 5•5/2=25/3=8 ¹/₃ см
Длина третьей стороны равна 7•5/3=35/3=11 ²/₃ см
в) Если большая сторона 7 см, то длина одной части 7:7=1 см, и стороны треугольника равны 5 см, 3 см, 7 см.
г) Если разность большей и меньшей стороны 2 см, то эта разность равна 7-3=4 частям.
Тогда длина одной части 2:4=0,5 см
Стороны треугольника равны 0,5•5=2,5 см; 0,5•3=1,5 см; 0,5•7=3,5 см
СН⊥АВ, значит тр-ки АВС, АСН и СВН подобны.
В тр-ке АСН НК⊥ АС, значит тр-ки АСН и НСК подобны.
КСЕН - прямоугольник, значит тр-ки НСК и КЕН равны.
Обозначим равные углы на рисунке. Сразу видно, что в четырёхугольнике АКЕВ ∠А+∠Е=∠К+∠В, значит он вписан в окружность.
Доказано.
Б) Пусть АН=х, ВН=АВ-х=12-х.
СН²=АН·ВН,
25=х(12-х),
-х²+12х-25=0,
х₁=6-√11, х₂=6+√11.
АН=6-√11, ВН=6+√11.
В тр-ке АСН АС²=СН²+АН²=25+(6-√11)²≈32.2,
АС≈5.7.
НК=АН·СН/АС=(6-√11)·5/5.7≈2.4,
СЕ=НК,
В тр-ке АСЕ АЕ=√(АС²+СЕ²)=√(32.2+2.4²)≈6.14,
В тр-ке АВС sinB=АС/АВ=5.7/12≈0.47,
В тр-ке ВАЕ АЕ/sinB=2R ⇒ R=АЕ/2sinB=6.14/(2·0.47)=6.5 - это ответ.
На самом деле, радиус окружности, описанной вокруг любого из треугольников, образованных из вершин четырёхугольника АКЕВ, равен радиусу описанной окружности вокруг самого четырёхугольника.