Опять треугольники не подобны. Самая большая сторона в треугольнике АВС это АВ=10 см, Самая большая сторона в треугольнике А₁В₁С₁ это А₁В₁=15 см. Их отношения равны А₁В₁:АВ=15:10=1,5 Самая маленькая сторона в треугольнике АВС это ВС=5 см. Самая маленькая сторона треугольнике А₁В₁С₁ это В₁С₁=7,5 см. Их отношения равны В₁С₁:ВС=7,5:5=1,5 Отношения совпадают.
Остаются отношения средних сторон. Средняя сторона в треугольнике АВС это АС=7 см, Средняя сторона в треугольнике А₁В₁С₁ это А₁С₁=9,5 см, Их отношения равны А₁С₁:АС=9,5:7=1,(3571428) Получается, что отношения этих сторон не соответствуют другим отношениям сторон.
<A+<KMC=180 Сумма углов в четырехугольнике равна 360,следовательно <C+<AKM=180 Если суммы противоположных углов равны,то вокруг четырехугольника можно описать окружность. <AKC=<AMC-опираются на одну дугу АС <KCM=<KAM-опираются на одну дугу KM <AOK=<COM-вертикальные,значит дуга АК равна дуге МС Следовательно <MAC=<KCA Значит <A=<C и <K=<M Отсюда ABCD равнобедренная трапеция,основания параллельны. ΔВАС тоже равнобедренный и АВ=АС Следовательно <BKM=<BAC,<BMK=<BCA-соответственные Тогда ΔBCA∞ΔKBM Отсюда KM/AC=BK/BC
Самая большая сторона в треугольнике АВС это АВ=10 см,
Самая большая сторона в треугольнике А₁В₁С₁ это А₁В₁=15 см.
Их отношения равны А₁В₁:АВ=15:10=1,5
Самая маленькая сторона в треугольнике АВС это ВС=5 см.
Самая маленькая сторона треугольнике А₁В₁С₁ это В₁С₁=7,5 см.
Их отношения равны В₁С₁:ВС=7,5:5=1,5
Отношения совпадают.
Остаются отношения средних сторон.
Средняя сторона в треугольнике АВС это АС=7 см,
Средняя сторона в треугольнике А₁В₁С₁ это А₁С₁=9,5 см,
Их отношения равны А₁С₁:АС=9,5:7=1,(3571428)
Получается, что отношения этих сторон не соответствуют другим отношениям сторон.
ответ: треугольники не подобны.
Сумма углов в четырехугольнике равна 360,следовательно <C+<AKM=180
Если суммы противоположных углов равны,то вокруг четырехугольника можно описать окружность.
<AKC=<AMC-опираются на одну дугу АС
<KCM=<KAM-опираются на одну дугу KM
<AOK=<COM-вертикальные,значит дуга АК равна дуге МС
Следовательно <MAC=<KCA
Значит <A=<C и <K=<M
Отсюда ABCD равнобедренная трапеция,основания параллельны.
ΔВАС тоже равнобедренный и АВ=АС
Следовательно <BKM=<BAC,<BMK=<BCA-соответственные
Тогда ΔBCA∞ΔKBM
Отсюда KM/AC=BK/BC