Всё по одному чертежу 1) а = 6; b = 8. найти всё остальное. 2)а = 8; ас = 6,4. найти всё остальное. 3)с = 10; a = 8. ( c - нижнее основание треугольника ( ac+ bc))найти всё остальное. 4)а = 6; h = 4,8.найти всё остальное. И можно с решением .
Т к у ромба все стороны раны, и известен периметр, найдем длины сторон: АВ=ВС=СК=АК=16/4=4см.
Рассмотри один из прямоугольных треугольников, образовавшихся при пересечении диагоналей ромба: треугольник АОВ: против угла в 30 градусов (АВО) лежит катет, равный половине гипотенузы, т е АО=4/2=2см. АО=ОС=2см, а ВО=ОК т к диагонали ромба точкой пересечения делятся пополам.
Найдем длину ВО по теореме Пифагора, из треугольника АВО: ВО=ОК=корень из АВ^2-AO^2=корень из 16-4=2корня из 3(см).
Тогда ВК=ВО+ОК=2корня из 3+2корня из 3=4корня из 3(см). АС=АО+ОС=2+2=4см.
Площадь ромба равна половине произведения длин его диагоналей:
Нужно обозначить току О (пусть это будет точка на плоскости бетта, образованная пересекающимся лучом из точки А). Иными словами у нас будет АО (расстояние от А до бетта). АО=2 (по условию).
Теперь проводеем луч из точки А до линии, образованной пересекающимися плоскостями алья и бетта, пусть луч этот пересекается в точке В.
Теперь у нас есть треугольник АОВ. угол АОВ=90 градусов, т.к. плоскости наклонены под улом 45, то угол ОВА=45 градусов, значит, и второй угол тоже 45 градусов, а это значит, что весь треугольние АОВ мало того, что прямоугольный, так еще и равнобедренный. В этом треугольнике АО и ОВ - катеты, а АВ - гипотенуза. АО=OВ=2 а АВ по теореме Пифагора АВ^2=AO^2+OB^2 AB=корень квадратный из 8
Т к у ромба все стороны раны, и известен периметр, найдем длины сторон: АВ=ВС=СК=АК=16/4=4см.
Рассмотри один из прямоугольных треугольников, образовавшихся при пересечении диагоналей ромба: треугольник АОВ: против угла в 30 градусов (АВО) лежит катет, равный половине гипотенузы, т е АО=4/2=2см. АО=ОС=2см, а ВО=ОК т к диагонали ромба точкой пересечения делятся пополам.
Найдем длину ВО по теореме Пифагора, из треугольника АВО: ВО=ОК=корень из АВ^2-AO^2=корень из 16-4=2корня из 3(см).
Тогда ВК=ВО+ОК=2корня из 3+2корня из 3=4корня из 3(см). АС=АО+ОС=2+2=4см.
Площадь ромба равна половине произведения длин его диагоналей:
S=1/2*АС*ВК=1/2*4*4корня из 3=8корней из3(см^2).
ОТВЕТ: 8корней из3(см^2)
Нужно обозначить току О (пусть это будет точка на плоскости бетта, образованная пересекающимся лучом из точки А). Иными словами у нас будет АО (расстояние от А до бетта). АО=2 (по условию).
Теперь проводеем луч из точки А до линии, образованной пересекающимися плоскостями алья и бетта, пусть луч этот пересекается в точке В.
Теперь у нас есть треугольник АОВ. угол АОВ=90 градусов, т.к. плоскости наклонены под улом 45, то угол ОВА=45 градусов, значит, и второй угол тоже 45 градусов, а это значит, что весь треугольние АОВ мало того, что прямоугольный, так еще и равнобедренный. В этом треугольнике АО и ОВ - катеты, а АВ - гипотенуза.
АО=OВ=2
а АВ по теореме Пифагора
АВ^2=AO^2+OB^2
AB=корень квадратный из 8