А) В треугольнике BCD отрезок МК - средняя линия, т.к. соединяет середины сторон. Значит MKIIBD, MK=1/2BD, отсюда BD=2*MK=2√5 см <DBC=<BDA как накрест лежащие углы при пересечении двух параллельных прямых ВС и AD секущей BD. В прямоугольном треугольнике ADB находим косинус угла BDA, зная катет BD и гипотенузу AD: cos BDA= BD/AD=2√5/2√10=1/√2=√2/2. Значит <BDA=<DBC=45°
б) Рассмотрим прямоугольный треугольник CDE. Здесь tg ECD=DE/CE, отсюда DE=tg ECD*CE=3CE и СЕ=DE/3 В прямоугольном треугольнике ВСЕ видим, что <BCE=180-<CEB-<CBE=180-90-45=45°, значит треугольник ВСЕ - равнобедренный, т.к. углы при его основании ВС равны ВЕ=СЕ, но СЕ=DE/3, значит ВЕ=DE/3. Значит DE/BE=3/1 Таким образом, отрезок BD состоит из 4 частей, каждая из которых равна: BD/4=2√5/4=√5/2 см Значит ВЕ=1 часть=√5/2 см
Центр О этих окружностей находится на пересечении диагоналей квадрата, то есть на середине любой диагонали. Хо = (Ха+Хс)/2 = (-1+5)/2=2, Уо = (Уа+Ус)/2 = (2+0)/2 = 1. О(2; 1).
Теперь находим радиусы окружностей. Радиус R описанной окружности равен половине диагонали. например АС. R = √(-1-5)²+(2-0)²)/2 = √(36+4)/2 = √40/2 = 2√10/2 = √10. Радиус r вписанной окружности равен половине стороны квадрата. r = √((-1-3)³+(2-4)²)/2 = √(16+4)/2 = √20/2 = 2√5/2 = √5.
Уравнение окружности, вписанной в квадрат.: (х-2)²+(у-1)² = 5.
Уравнение окружности, описанной около квадрата,: (х-2)²+(у-1)² = 10.
BD=2*MK=2√5 см
<DBC=<BDA как накрест лежащие углы при пересечении двух параллельных прямых ВС и AD секущей BD. В прямоугольном треугольнике ADB находим косинус угла BDA, зная катет BD и гипотенузу AD:
cos BDA= BD/AD=2√5/2√10=1/√2=√2/2. Значит
<BDA=<DBC=45°
б) Рассмотрим прямоугольный треугольник CDE. Здесь tg ECD=DE/CE, отсюда DE=tg ECD*CE=3CE и СЕ=DE/3
В прямоугольном треугольнике ВСЕ видим, что
<BCE=180-<CEB-<CBE=180-90-45=45°,
значит треугольник ВСЕ - равнобедренный, т.к. углы при его основании ВС равны
ВЕ=СЕ, но СЕ=DE/3, значит ВЕ=DE/3. Значит
DE/BE=3/1
Таким образом, отрезок BD состоит из 4 частей, каждая из которых равна:
BD/4=2√5/4=√5/2 см
Значит ВЕ=1 часть=√5/2 см
Хо = (Ха+Хс)/2 = (-1+5)/2=2,
Уо = (Уа+Ус)/2 = (2+0)/2 = 1.
О(2; 1).
Теперь находим радиусы окружностей.
Радиус R описанной окружности равен половине диагонали. например АС.
R = √(-1-5)²+(2-0)²)/2 = √(36+4)/2 = √40/2 = 2√10/2 = √10.
Радиус r вписанной окружности равен половине стороны квадрата.
r = √((-1-3)³+(2-4)²)/2 = √(16+4)/2 = √20/2 = 2√5/2 = √5.
Уравнение окружности, вписанной в квадрат.:
(х-2)²+(у-1)² = 5.
Уравнение окружности, описанной около квадрата,:
(х-2)²+(у-1)² = 10.