Втрапеции abcd с основаниями ad и вс биссектриса угла bad проходит через середину м стороны cd. известно, что ав = 5, ам = 4. найдите длину отрезка вм.
Пусть продолжение AM за точку M пересекает BC (точнее, продолжение этого отрезка за точку С) в точке K. Тогда 1) Треугольник ABK - равнобедренный, так как ∠BKA = ∠KAD = ∠KAB; то есть BK = AB = 5; 2) AM = MK; тут можно сослаться на теорему Фалеса, а можно просто сказать, что ΔAMD = ΔKMC; поскольку есть пара равных сторон MD = MC и углы при равных сторонах тоже равны (из за параллельности оснований трапеции). То есть BM - медиана к основанию у равнобедренного треугольника ABK. Поэтому BM перпендикулярно AM, и BM = 3; (получился "египетский" треугольник).
Тогда
1) Треугольник ABK - равнобедренный, так как ∠BKA = ∠KAD = ∠KAB; то есть BK = AB = 5;
2) AM = MK; тут можно сослаться на теорему Фалеса, а можно просто сказать, что ΔAMD = ΔKMC; поскольку есть пара равных сторон MD = MC и углы при равных сторонах тоже равны (из за параллельности оснований трапеции).
То есть BM - медиана к основанию у равнобедренного треугольника ABK.
Поэтому BM перпендикулярно AM, и BM = 3; (получился "египетский" треугольник).