Если в четырёхугольник вписана окружность, то суммы длин противоположных сторон равны: AD + BC = AB + CD
Поэтому AB = AD + BC - CD = 16 + 12 - 15 = 13
Опустим перпендикуляры из точек B и C (см. рисунок). Заметим, что так как у ABCD - трапеция и AD, BC - основания, то полученные высоты равны между собой, обозначим их длину за h. Диаметр вписанной окружности также равен h.
Пусть . Тогда , так как - по построению прямоугольник. AD = 16, поэтому .
Треугольники , прямоугольные, запишем для них теорему Пифагора:
AD + BC = AB + CD
Поэтому
AB = AD + BC - CD = 16 + 12 - 15 = 13
Опустим перпендикуляры из точек B и C (см. рисунок). Заметим, что так как у ABCD - трапеция и AD, BC - основания, то полученные высоты равны между собой, обозначим их длину за h. Диаметр вписанной окружности также равен h.
Пусть . Тогда , так как - по построению прямоугольник. AD = 16, поэтому .
Треугольники , прямоугольные, запишем для них теорему Пифагора:
Находим из последнего равенства x:
Итак, x = 5, тогда
ответ. 12