В евклидовой геометрии равнобедренная трапеция — это выпуклый четырёхугольник с осью симметрии, проходящей через середины двух противоположных сторон. Этот четырёхугольник является частным случаем трапеций. В любой равнобедренной трапеции две противоположные стороны (основания) параллельны, а две другие стороны (боковые) имеют одинаковые длины (свойство, которому удовлетворяет также параллелограмм). Диагонали также имеют одинаковые длины. Углы при каждом основании равны и углы при разных основаниях являются смежными (в сумме дающие 180º).
Начертите чертёж и посмотрите внимательно. Рассмотрим одну из вершин трапеции и отрезки сторон, соединяющие эту вершину с точками, в которых окружность касается сторон. Эти отрезки равны между собой как отрезки касательных, проведённых к окружности из одной точки. Такое рассуждение можно провести для всех 4-х вершин. Таким образом, наша трапеция "собрана" из отрезков 4-х видов (длин) , каждый повторяется по 2 раза. Назовём эти длины А, В, С и D. Периметр трапеции - это 2(А+В+С+D)=12. Далее, средняя линия трапеции равна полусумме её оснований. Основания также складываются из наших 4-х отрезков. Сумма оснований будет (А+В+С+D)=12/2=6. Полусумма - (А+В+С+D)/2=6/2=3.
Язык
Скачать PDF
Следить
Править
В евклидовой геометрии равнобедренная трапеция — это выпуклый четырёхугольник с осью симметрии, проходящей через середины двух противоположных сторон. Этот четырёхугольник является частным случаем трапеций. В любой равнобедренной трапеции две противоположные стороны (основания) параллельны, а две другие стороны (боковые) имеют одинаковые длины (свойство, которому удовлетворяет также параллелограмм). Диагонали также имеют одинаковые длины. Углы при каждом основании равны и углы при разных основаниях являются смежными (в сумме дающие 180º).
Рассмотрим одну из вершин трапеции и отрезки сторон, соединяющие эту вершину с точками, в которых окружность касается сторон.
Эти отрезки равны между собой как отрезки касательных, проведённых к окружности из одной точки.
Такое рассуждение можно провести для всех 4-х вершин.
Таким образом, наша трапеция "собрана" из отрезков 4-х видов (длин) , каждый повторяется по 2 раза. Назовём эти длины А, В, С и D.
Периметр трапеции - это 2(А+В+С+D)=12.
Далее, средняя линия трапеции равна полусумме её оснований. Основания также складываются из наших 4-х отрезков. Сумма оснований будет (А+В+С+D)=12/2=6.
Полусумма - (А+В+С+D)/2=6/2=3.