Втреугольнике abc: ba=12; bc=10; угол b=20°. найдите длину ac и площадь треугольниа! быстрее! если что, то это 8 класс. сейчас проходим теорему о средней линии треугольника.
а) Отрезки касательных, проведенных из одной точки, равны.
DA=DC, EB=EC
P(MDE)= MD+DC+ME+EC =MD+DA+ME+EB =MA+MB
Кроме того, MA=MB => P(MDE)/2 =MA=MB
б) Радиусы OA и OB перпендикулярны касательным. Сумма противоположных углов четырехугольника AOBM равна 180, ∠AOB+∠M=180. По свойству отрезков касательных из одной точки* OD - биссектриса ∠AOC, OE - биссектриса ∠BOC.
∠DOE= ∠AOC/2 +∠BOC/2 =∠AOB/2 =(180-∠M)/2
----------------------------
*△DOA=△DOC по катету (радиус) и общей гипотенузе, их соответствующие элементы равны. Аналогично △EOB=△EOC.
а) Отрезки касательных, проведенных из одной точки, равны.
DA=DC, EB=EC
P(MDE)= MD+DC+ME+EC =MD+DA+ME+EB =MA+MB
Кроме того, MA=MB => P(MDE)/2 =MA=MB
б) Радиусы OA и OB перпендикулярны касательным. Сумма противоположных углов четырехугольника AOBM равна 180, ∠AOB+∠M=180. По свойству отрезков касательных из одной точки* OD - биссектриса ∠AOC, OE - биссектриса ∠BOC.
∠DOE= ∠AOC/2 +∠BOC/2 =∠AOB/2 =(180-∠M)/2
----------------------------
*△DOA=△DOC по катету (радиус) и общей гипотенузе, их соответствующие элементы равны. Аналогично △EOB=△EOC.
Равнобедренный треугольник ABC
AB=BC=6см (т.к. треугольник равнобедренный)
Угол BAC=углу BCA=45 градусов (углы при основании равны у равнобедренного треугольника)
Получается 2 угла по 45 в сумме дают 90, значит третий угол=180-90=90 градусов.
Выходит, что треугольник равнобедренный и прямоугольный.
AB=BC катеты
AC=гипотенуза
По теореме Пифагора найдем AC
AC^2=AB^2+BC^2
AC^2=36+36
AC^2=72
AC=6√2
Высота равнобедренного треугольника =
, где a=AB=BC=6
b=AC=6√2
h=
Площадь треугольника=1/2*основание*высоту= см
Подробнее - на -